• Title/Summary/Keyword: hydrogen capacity

Search Result 650, Processing Time 0.027 seconds

Differential responses of peroxidases in sweetpotato suspension-cultured cells to cadmium treatment

  • Ju Hwan Kim;Ki Jung Nam;Kang-Lok Lee;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.76-81
    • /
    • 2023
  • As cultured plant cells can grow in high oxidative stress conditions, they form an excellent system to study antioxidant mechanisms and the mass production of antioxidants. Oxidative stress is a major cause of damage in plants exposed to various types of environmental stress, including heavy metals, such as cadmium (Cd). Heavy metal accumulation can interfere with many cell functions and plant growth. To evaluate the contribution of oxidative stress to Cd-induced toxicity, cultured sweetpotato (Ipomoea batatas) cells were treated with increasing concentrations of Cd (0, 10, 25, and 50 μM) and cultured further. Cell growth was significantly inhibited by 25 and 50 μM of Cd, and the total protein content increased with 50 μM of Cd. Additionally, the activity of peroxidase (POD) and ascorbate peroxidase (APX), antioxidant enzymes that remove hydrogen peroxide (a reactive oxygen species), increased in the cells after treatment with 50 μM of Cd. The expression analysis of POD, APX, and peroxiredoxin (PRX) isolated from sweetpotato cultured cells in a previous study revealed the differential expression of POD in response to Cd. In this study, the expression levels of several acidic POD (swpa2, swpa3, and swpa4) and basal POD (swpb1, swpb2, and swpb3) genes were increased in Cd-treated cultured cells. These results indicate that Cd-mediated oxidative stress is closely linked to improved POD-mediated antioxidant defense capacity in sweetpotato suspension-cultured cells.

Characteritics of Toluene and $H_2S$ Removal in a Biotrickling filters with Plastic & Woodchip composite Media (복합플라스틱계 담체를 이용한 Biotrickling filters의 Toluene과 황화수소 제거특성)

  • Yim, Dong-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • This study developed composition-plastic media with woodchips and plastic as main materials, and examined the performance of media. Compared to the existing commercial media, the media had similar performance in removal efficiency and microbes attaching characteristic, and was evaluated that they are distinguished from economic side. Performance test of media was conducted to examine the removal capacity of toluene and hydrogen sulfide in a gas stream by using a lab-scale biotrickling filter systems packed with them. At a volumetric loading of $1.5\;m^3/hr$ with inlet concentration 260 ppm and empty bed residence time (EBRT) 42s, the toluene removal efficiency was shown over 90%, and the maximum elimination capacity of toluene in the biotrickling filter was $77g/m^3{\cdot}hr$. Effective co-treatments of $H_2S$ and Toluene were observed in the lab-scale biotrickling filters. The maximum elimination capacity of $H_2S$ was $100\;g-S/m^3{\cdot}hr$. Up to 100 ppm, the concentration of $H_2S$ did not have an effect on toluene removal efficiency, but the removal efficiency of toluene decreased with increasing inlet $H_2S$ concentration.

The beneficial effect of ginsenosides extracted by pulsed electric field against hydrogen peroxide-induced oxidative stress in HEK-293 cells

  • Liu, Di;Zhang, Ting;Chen, Zhifei;Wang, Ying;Ma, Shuang;Liu, Jiyun;Liu, Jingbo
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.169-179
    • /
    • 2017
  • Background: Ginsenosides are the main pharmacological components of Panax ginseng root, which are thought to be primarily responsible for the suppressing effect on oxidative stress. Methods: 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and oxygen radical absorption capacity were applied to evaluate the antioxidant activities of the ginsenosides. Human embryonic kidney 293 (HEK-293) cells were incubated with ginsenosides extracted by pulsed electric field (PEF) and solvent cold soak extraction (SCSE) for 24 h and then the injury was induced by $40{\mu}M$ $H_2O_2$. The cell viability and surface morphology of HEK-293 cells were studied using MTS assay and scanning electron microscopy, respectively. Dichloro-dihydro-fluorescein diacetate fluorescent probe assay was used to measure the level of intracellular reactive oxygen species. The intracellular antioxidant activities of ginsenosides were evaluated by cellular antioxidant activity assay in HepG2 cells. Results: The PEF extracts displayed the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and stronger oxygen radical absorption capacity (with an oxygen radical absorption capacity value of $14.48{\pm}4.04{\mu}M\;TE\;per\;{\mu}g/mL$). The HEK-293 cell model also suggested that the protective effect of PEF extracts was dose-dependently greater than SCSE extracts. Dichloro-dihydro-fluorescein diacetate assay further proved that PEF extracts are more active (8% higher than SCSE extracts) in reducing intracellular reactive oxygen species accumulation. In addition, scanning electron microscopy images showed that the HEK-293 cells, which were treated with PEF extracts, maintained more intact surface morphology. Cellular antioxidant activity values indicated that ginsenosides extracted by PEF had stronger cellular antioxidant activity than SCSE ginsenosides extracts. Conclusion: The present study demonstrated the antioxidative effect of ginsenosides extracted by PEF in vitro. Furthermore, rather than SCSE, PEF may be more useful as an alternative extraction technique for the extraction of ginsenosides with enhanced antioxidant activity.

pH Dependence on EC in Soils Amended with Fertilizer and Organic Materials and in Soil of Plastic Film House (비료와 퇴구비를 처리한 토양과 시설재배지 토양에서 토양의 EC에 따른 pH변화)

  • Kim, Yoo-Hak;Kim, Myeong-Sook;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.247-252
    • /
    • 2005
  • Soil pH is an intensity factor of releasing hydrogen ion which is buffered by aluminum. It depends on pH buffer capacity of Al whether soil pH is governed directly by cations or not. A study was conducted to elucidate the pattern of pH changes by soil EC. Fertilizer and three kinds of organic manures composed of cow and pig and fowl dropping and one kind of rice straw compost were added independently into upland sandy loam soil. This treated soils and four upland soils under plastic film house having different levels in electrical conductivity (EC) were incubated with field capacity at $30^{\circ}C$ for 5, 10, 20 and 40 days. Soil pH varied directly as the cations contained in organic materials according to degree of saturating pH buffer capacity (pBC) of sandy loam soil. pH of the soils under plastic film house was lowered by soil EC due to governing by overplus of cation beyond pBC.

Preparation and Characterization of $Cu/Ce_xZr_{1-x}O_2$ Catalysts for Preferential Oxidation of Carbon Monoxide (일산화탄소의 선택적 산화반응을 위한 $Cu/Ce_xZr_{1-x}O_2$ 촉매의 합성과 특성분석)

  • Lee, So-Yeon;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.54-63
    • /
    • 2007
  • Even traces of CO in the hydrogen-rich feed gas to proton exchange membrane fuel cells (PEMFC) poison the platinum anode electrode and dramatically decrease the power output. In this work, a variety of catalytic materials consisting of $Cu/Ce_xZr_{1-x}O_2$, (x = 0.0-1.0) were synthesised, characterized and tested for CO oxidation and preferential oxidation of CO (PROX). These catalysts prepared by hydrothermal and deposition-precipitation methods. The catalysts were characterized by XRD, XRF, SEM, BET, $N_2O$ titration and oxygen storage capacity (OSC) measurement. The effects of composition of the support and degree of excess oxygen were investigated fur activity and $CO_2$ selectivity with different temperatures. The composition of the support markedly influenced the PROX activity. Among the various $Cu/Ce_xZr_{1-x}O_2$ catalysts having different composition, $Cu/Ce_{0.9}Zr_{0.1}O_2$ and $Cu/Ce_{0.7}Zr_{0.3}O_2$ showed the highest activities (>99%) and selectivities (ca.50%) in the temperature range of $150{\sim}160^{\circ}C$. It was found that by using of $Ce_xZr_{1-x}O_2$ mixed oxide support which possesses a high oxygen storage capacity, oxidation-reduction activity of Cu-based catalyst was improved, which resulted in the increase of catalytic activity and selectivity of CO oxidation in excess $H_2$ environments.

  • PDF

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption

  • Jeon, Nu Ri;Song, Hoon Sub;Park, Moon Gyu;Kwon, Soon Jin;Ryu, Ho Jeong;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide ($H_2S$) adsorption at mid-to-high (300 to $500^{\circ}C$) temperatures. In order to investigate the critical roles of oxygen containing functional groups, such as hydroxyl, epoxy and carboxyl groups, attached on rGO surface for the $H_2S$ adsorption, various characterization methods (TGA, XRD, FT-IR, SEM and XPS) were conducted. For the reduction process for graphite oxide (GO) to rGO, a microwave irradiation method was used, and it provided a mild reduction environment which can remain substantial amount of oxygen functional groups on rGO surface. Those functional groups were anchoring and holding nano-sized ZnO onto the 2D rGO surface; and it prevented the aggregation effect on the ZnO particles even at high temperature ranges. Therefore, the $H_2S$ adsorption capacity had been increased about 3.5 times than the pure ZnO.

Syntheses of LiMn1.92Co0.08O4 and LiNi1-yCoyO2 and Electrochemical Properties of their Mixtures for Lithium Secondary Battery (리튬 이차전지용 LiMn1.92Co0.08O4, LiNi1-yCoyO2 의 합성과 그들의 혼합물의 전기화학적 특성)

  • Kwon, IkHyun;Kim, HunUk;Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.62-71
    • /
    • 2004
  • $LiMn_{1.92}Co_{0.08}O_4-x\;wt.%LiNi_{0.7}Co_{0.3}O_2$를 단순화한 연소법에 의하여 합성하고, 그것들의 전기화학적 특성을 조사하였다. 또한 30분동안 밀링하여 준비한 $LiMn_{1.92}Co_{0.08}O_4-x\;wt.%LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41 and 47) 혼합물 전극의 전기화학적 특성을 조사하였다. x=33 조성의 전극이 가장 큰 초기방전용량(132.0mAh/g at 0.1C)을 나타내었다. x=9조성의 전극은 비교적 큰 초기방전용량(109.9mAh/g at 0.1C)과 우수한 싸이클 특성을 나타내었다. 싸이클링에 따른 혼합물 전극의 방전용량의 감소는 주로 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화에 기인한다고 생각된다. 그런데 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화는 $LiMn_{1.92}Co_{0.08}O_4$로부터 용해된 Mn이 $LiNi_{0.7}Co_{0.3}O_2$를 둘러쌈(coating)으로써 야기되는 것으로 생각된다.

Antioxidant Capacity and Quinone Reductase Activity of Methanol Extracts and Fractions from Papaya Seed (파파야씨 추출물 및 분획물의 항산화, QR 활성)

  • Yu, Mi-Hee;Lee, Sung-Gyu;Im, Hyo-Gwon;Chae, In-Gyeong;Kim, Hyun-Jeong;Lee, Jin-Ho;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.775-782
    • /
    • 2011
  • In this study, the antioxidant activity of methanol extracts and fractions from papaya seed were investigated in vitro. Total polyphenol contents of methanol extracts and fractions from papaya seed varied from 17.74 to 125.99 ${\mu}g/mg$ and total flavonoid contents varied from 1.60 to 32.69 ${\mu}g/mg$. Contents of polyphenol and flavonoid in ethyl acetate (EtOAc) fraction was found to be extremely high (compared with the other fractions examined). Radical-scavenging activities of methanol extracts and fractions were examined using ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radicals, 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide assay. As a result, ethyl acetate fraction of papaya seed showed the highest radical-scavenging activity in various antioxidant systems. The EtOAc fraction from papaya seed induced QR activity in concentrations of 12.5 to 50 ${\mu}g/ml$ with a maximum of a 3.3-fold induction at 50 ${\mu}g/ml$ of fraction. Therefore, the most effective QR inducer among these fractions can be said to reside in the EtOAc fraction, indicating that strong constituents responsible for QR induction potency in the papaya seed extract are largely contained in the EtOAc fraction.

Experimental Study on Dilution Effect of Exhaust Gas in SNG Combustion on a Model Gas Turbine (가스터빈에서 SNG 연료 조성에 대한 희석제의 배기배출물 저감효과에 대한 실험적 연구)

  • Joo, Seongpil;Yoon, Jisu;Kim, Jeongjin;Kim, Seongheon;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.603-610
    • /
    • 2016
  • This paper describes experimental results about emission and NOx reduction of dilution effect (Nitrogen and carbon dioxide) about various fuel compositions of synthetic natural gas (SNG). Combustion experiment was performed to investigate the combustion characteristics for SNG with various hydrogen ratio in SNG, heat input and equivalence ratio in a partially premixed model gas turbine combustor. NOx emission was similar to each hydrogen ratio and flame characteristics was investigated from OH chemiluminescence images. There was a singularity of CO emission in stoichiometric condition and it can be identified using OH chemiluminescence intensity. In addition, dilution effect was studied in using nitrogen and carbon dioxide as diluent to reduce the NOx emission. Carbon dioxide diluent was more effective to NOx reduction than nitrogen diluent because of its high diluent specific heat and its heat capacity.