Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.6.775

Antioxidant Capacity and Quinone Reductase Activity of Methanol Extracts and Fractions from Papaya Seed  

Yu, Mi-Hee (Department of Food Science and Technology, Keimyung University)
Lee, Sung-Gyu (Department of Food Science and Technology, Keimyung University)
Im, Hyo-Gwon (Department of Food Science and Technology, Keimyung University)
Chae, In-Gyeong (Department of Food Science and Technology, Keimyung University)
Kim, Hyun-Jeong (The Center for Traditional Microorganism Resources, Keimyung University)
Lee, Jin-Ho (Department of Chemistry, Keimyung University)
Lee, In-Seon (Department of Food Science and Technology, Keimyung University)
Publication Information
Journal of Life Science / v.21, no.6, 2011 , pp. 775-782 More about this Journal
Abstract
In this study, the antioxidant activity of methanol extracts and fractions from papaya seed were investigated in vitro. Total polyphenol contents of methanol extracts and fractions from papaya seed varied from 17.74 to 125.99 ${\mu}g/mg$ and total flavonoid contents varied from 1.60 to 32.69 ${\mu}g/mg$. Contents of polyphenol and flavonoid in ethyl acetate (EtOAc) fraction was found to be extremely high (compared with the other fractions examined). Radical-scavenging activities of methanol extracts and fractions were examined using ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radicals, 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide assay. As a result, ethyl acetate fraction of papaya seed showed the highest radical-scavenging activity in various antioxidant systems. The EtOAc fraction from papaya seed induced QR activity in concentrations of 12.5 to 50 ${\mu}g/ml$ with a maximum of a 3.3-fold induction at 50 ${\mu}g/ml$ of fraction. Therefore, the most effective QR inducer among these fractions can be said to reside in the EtOAc fraction, indicating that strong constituents responsible for QR induction potency in the papaya seed extract are largely contained in the EtOAc fraction.
Keywords
Papaya; seed; antioxidant; quinone reductase; Hepa1c1c7 cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, Y. and P. Talalay. 1994. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 54, 1976-1981.
2 Uda, Y., K. R. Price, G. Wklliamson, and M. J. Rhodes. 1997. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett. 120, 213-216.   DOI
3 VanEtten, C., M. E. Daxenbichler, P. H. Williams, and W. F. Klodek. 1976. Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible parts of 22 varieties of cabbage. J. Agric. Food Chem. 24, 452-455.   DOI
4 Wang, M., J. Li, M. Rangarajan, Y. Shao, E. J. La Voie, T. Huang, and C. Ho. 1998. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 46, 4869-4873.   DOI
5 Wattenberg, L. W. 1985. Chemoprevention of cancer. Cancer Res. 45, 1-8.   DOI
6 Wattenberg, L. W. 1977. Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J. Natl. Cancer Inst. 58, 395-398.
7 Wattenberg, L. W. 1981. Inhibition of carcinogen induced neoplasia by sodium cyanate, tert-butyl isocyanate and benzyl isothiocyanate administered subsequent to carcinogen exposure. Cancer Res. 41, 2991-2994.
8 Wattenberg, L. W. 1983. Inhibition of neoplasia by minor dietary constituents. Cancer Res. 43, 2448s-2551s.
9 Wiart, C. 2006. Family Caricaceae. In Medicinal Plants of the Asia-Pacific: Drugs for the Future? pp. 183-186, World Scientific Publishing Co. Pte. Ltd., Singapore.
10 Xie, T., M. Belinsky, Y. Xu, and A. K. Jaiswal. 1995. AREand TRE-mediated regulation of gene expression. J. Biol. Chem. 270, 6894-6900.   DOI
11 Zhang, Y., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 15, 2399-2403.
12 Prochaska, H. J. and P. Talalay. 1988. Regulatory mechanism of monofunctional and bifunctional anticarcinogenic enzymes in murine liver. Cancer Res. 48, 4682-4776.
13 Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237.   DOI
14 Rice-Evans, C. A., N. J. Miller, and G. Panganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159.   DOI
15 Talalay, P. 2000. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12, 5-11.   DOI
16 Talalay, P., J. W. Fahey, W. D. Holtzclaw, T. Prestera, and Y. Zhang. 1995. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol. Lett. 82-83, 173-179.   DOI
17 Tanigawa, S., M. Fujii, and D. X. Hou. 2007. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 42, 1690-1703.   DOI
18 Talalay, P. 1989. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv. Enzyme Regul. 28, 237-250.   DOI
19 Tang, C. S. 1971. Benzyl isothiocyanate in papaya fruit. Phytochemistry 12, 117-121.
20 Tang, C. S., M. M. Syed, and R. A. Hamilton. 1972. Benzyl isothiocyanate in the Caricaceae. Phytochemistry 11, 2531-2535.   DOI
21 Tookey, H. L., C. H. Van Etten, and M. E. Daxenbichler. 1980. Glucosinolates. pp. 103-142, In Liener, I. E. (ed.), Toxic Constituents of Plant Stuffs.
22 Uchida, K. 2000. Role of reactive aldehyde in cardiovascular diseases. Free Radic. Biol. Med. 28, 1685-1696.   DOI
23 Marnett, L. J. 2000. Oxyradicals and DNA damage. Carcinogenesis 21, 361-370.   DOI
24 Miranda, C. L., G. L. Aponso, J. F. Stevens, M. L. Deinzer, and D. R. Buhler. 2000. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett. 28, 21-29.
25 Muller, H. E. 1985. Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl. Bakteriol. Mikrobiol. Hygiene 259, 151-154.
26 Nakamura, Y., M. Toshimoto, Y. Murata, Y. Shimoishi, Y. Asai, E. Y. Park, and K. Sato. 2007. Papaya seed represents a rich source of biologically active isothiocyanate. J. Agric. Food Chem. 55, 4407-4413.   DOI
27 Nestle, M. 1997. Broccoli sprouts as inducers of carcinogen- detoxifying enzyme systems: clinical, dietary, and policy implications. Proc. Natl. Acad. Sci. USA 14, 11149-11151.
28 Pintao, A. M., M. S. Pais, H. Coley, L. R. Kelland, and J. R. Judson. 1995. In vitro and in vivo antitumor activity of benzyl isothiocyanate a natural product of Tropeolum majus. Planta Med. 61, 233-236.   DOI
29 Nieva Moreno, M. I., M. I. Isla, A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71, 109-114.   DOI
30 OECD (Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology), 2005. Consensus Document on the Biology of Papaya (Carica papaya) Series on Harmonisation of Regulatory Oversight in Ciotechnology No 33.
31 Primiano, T., T. R. Sutter, and T. W. Kensler. 1997. Antioxidant inducible gene. Adv. Pharmacol. 38, 293-328.
32 Prochaska, H. J. and A. B. Santamaria. 1988. Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter well: a screening assay for anticarcinogenic enzymes inducers. Anal. Biochem. 169, 328-336.   DOI
33 Gulcin, İ., E. Bursal, M. H. Sehitoglu, M. Bilsel, and A. C. Goren. 2010. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 48, 2227-2238.   DOI
34 Hertog, M. G., P. M. Sweetnam, A. M. Fehily, P. C. Elwood, and D. Kromhout. 1997. Potentially Anticarcinogenic Secondary Metabolites from Fruit and Vegetables. pp. 313-329, Clarendon Press, Oxford.
35 Jang, M., L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 10, 218-220.
36 Kuo, S. M. 1996. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett. 110, 41-48.   DOI
37 Johns, T., R. L. Mahunnah, P. Sanaya, L. Chaprnan, and T. Ticktin. 1999. Saponins and phenolic content in plant dietary additives of a traditional subsistence community, the Batemi of Ngorongoro District, Tanzania. J. Ethnopharmacol. 66, 1-10.   DOI
38 Kermanshai, R., B. E. McCarry, J. Rosenfeld, P. S. Summers, E. A. Weretilnyk, and G. J. Sorger. 2001. Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57, 427-435.   DOI   ScienceOn
39 Kim, B. R., R. Hu, Y. S. Keum, V. Hebbar, G. Shen, S. S. Nair, and A. N. Kong. 2003. Effects of gluathione on antioxidant responese element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res. 63, 7520-7525.
40 Lee, S. O., H. J. Lee, M. H. Yu, H. G. Im, and I. S. Lee. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from edible vegetables produced in Ullung island. Korean J. Food Sci. Technol. 37, 233-240.
41 Liu, F. 2000. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci. 66, 725-735.   DOI
42 Chai, P. C., L. H. Long, and B. Halliwell. 2003. Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem. Biophys. Res. Commun. 304, 650-654.   DOI
43 Chung, F. L. 1992. Chemoprevention of lung carcinogenesis by aromatic isothiocyanates. pp. 227-245, In Wattenberg, L. W., M. Lipkin, C. W. Boone, and G. J. Kelloff (eds.), Cancer Chemoprevention. CRC Press, Boca Raton, FL.
44 Fahey, J. W. and P. Talalay. 1999. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem. Toxicol. 37, 973-979.   DOI
45 Chung, F. L., M. Wang, and S. S. Hecht. 1985. Effects of dietary indoles and isothiocyanates on N-nitrosodimethylamine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone hydroxylation and DNA methylation in rat liver. Carcinogenesis 6, 539-543.   DOI
46 Chung, H. S., L. C. Chang, S. K. Lee, L. A. Shamon, R. B. van Breemen, R. G. Mehta, N. R. Farnsworth, J. M. Pezzuto, and A. D. Kinghorn. 1999. Flavonoid constituents of Chorizanthe diffusa with potential cancer chemopreventive activity. J. Agric. Food Chem. 47, 36-41.   DOI
47 Doll, R. 1990. An overview of the epidemiological evidence linking diet and cancer. Proc. Nutr. Soc. 49, 119-131.   DOI
48 Fenwick, G. R., R. K. Heany, and L. W. Mullin. 1983. Glucosinolates and their breakdown products in foods and food plants. Crit. Rev. Food Sci. Nutr. 18, 123-201.
49 Folin, O. and W. Denis. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239-249.
50 Ford, E. S. and A. Sowell. 1999. Serum R-tocopherol status in the United States population: Findings from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 150, 290-300.   DOI   ScienceOn
51 Cadenas, E. and K. J. A. Davies. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222-230.   DOI
52 Ak, T. and İ. Gulcin. 2008. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27-37.   DOI
53 Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.   DOI