pH Dependence on EC in Soils Amended with Fertilizer and Organic Materials and in Soil of Plastic Film House

비료와 퇴구비를 처리한 토양과 시설재배지 토양에서 토양의 EC에 따른 pH변화

  • Kim, Yoo-Hak (National Institute of Agricultural Science and Technology) ;
  • Kim, Myeong-Sook (National Institute of Agricultural Science and Technology) ;
  • Kwak, Han-Kang (National Institute of Agricultural Science and Technology)
  • Received : 2005.09.01
  • Accepted : 2005.10.05
  • Published : 2005.10.30

Abstract

Soil pH is an intensity factor of releasing hydrogen ion which is buffered by aluminum. It depends on pH buffer capacity of Al whether soil pH is governed directly by cations or not. A study was conducted to elucidate the pattern of pH changes by soil EC. Fertilizer and three kinds of organic manures composed of cow and pig and fowl dropping and one kind of rice straw compost were added independently into upland sandy loam soil. This treated soils and four upland soils under plastic film house having different levels in electrical conductivity (EC) were incubated with field capacity at $30^{\circ}C$ for 5, 10, 20 and 40 days. Soil pH varied directly as the cations contained in organic materials according to degree of saturating pH buffer capacity (pBC) of sandy loam soil. pH of the soils under plastic film house was lowered by soil EC due to governing by overplus of cation beyond pBC.

토양 pH는 토양화학반응의 결과로 토양용액으로 해리하는 수소이온을 나타내는 intensity factor이고 토양의 알루미늄에 의하여 수소이온이 완충되고 있다. 토양 양이온에 의하여 알루미늄의 수소이온 완충기능이 저하되면 토양 pH 양상이 달라지므로 토양 EC에 따른 토양 pH 양상은 토양의 pH 완충력 등 토양관리를 위한 중요한 정보를 담고 있다. 토양에 투입되는 양분에 의하여 토양 pH가 달라지는 현상을 구명하고 시설재배지 토양의 EC에 따른 토양 pH 양상을 파악하기 위하여 사양토에는 가축분과 퇴비 및 비료를 넣고 시설재배지 토양은 무처리 상태로 $30^{\circ}C$에서 5, 10, 20, 40일간 호기항온 후 토양과 토양용액의 화학적 특성을 분석하였다. 가축분을 첨가한 사양토의 pH 양상은 토양에 첨가된 양이온 함량에 비례하여 pH가 올라갔으며 양분이 축적된 시설토양의 pH 양상은 양분함량이 많을수록 pH가 낮아졌다. 따라서 토양 EC가 높아질 때 토양 알루미늄의 수소이온 완충력이 높은 상태에서는 토양의 pH는 양이온의 양에 비례하여 올라가지만 토양 알루미늄의 수소이온 완충력이 저하된 상태에서는 토양의 음이온의 양에 비례하여 pH가 낮아지는 것으로 나타났다.

Keywords

References

  1. Bloom, P. R. 2000. Soil pH and pH buffering. p. 333-352. In M. E. Sumner (ed.) Handbook of soil science. CRC press, New York, NY, USA
  2. Hargrove, W. L., and G. W. Thomas. 1981. Effect of organic matter on exchangeable aluminum and plant growth in acid soils. In Chemistry in the soil environment. p. 151-166. ASA special publication No. 40. ASA SSSA. Madison, WI, USA
  3. Hodges, S. C. 1987. Aluminum speciation: A comparison of five methods. Soil Sci. Soc. Am. J. 51:57-64 https://doi.org/10.2136/sssaj1987.03615995005100010011x
  4. Jung, B. G., G. B. Jung, J. H. Yoon, H. J. Jun, K. R. Cho, S. J. Lim, H. J. Kim, Y. G. Nam, Y. H. Moon, H. K. Kim, Y. J. S대, Y. H. Lee, and S. C. Lee. 2003. Survey on the change of chemical properties of agricultural fields in Korea. p. 5-55. In The report of monitoring project on agri-environment quality in Korea. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  5. Kim, Y. H., J. H. Yoon, B. G. Jung, Y. S. Zhang, and H. K. Kwak. 2004. pH buffer capacity and lime requirement of Korean acid soils. J. Korean Soc. Soil Sci. Fert. 37:378-382
  6. Kim, Y. H., J. H. Yoon, B. G. Jung, and M. K. Kim. 2001. Model for ionic species estimation in soil solution. J. Korean Soc. Soil Sci. Fert. 34:213-236
  7. Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons Inc., New York, NY, USA
  8. Martin, A. E., and R. Reeve. 1958. Chemical studies of podzolic illuvial horizons. III. Titration curves of organic matter suspensions. J. Soil Sci. 9:89-100 https://doi.org/10.1111/j.1365-2389.1958.tb01901.x
  9. NIAST. 1988. Soil chemical methods - soil, plant, microbes. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  10. Skoog, D. A., and D. M. West. 1974. Analytical chemistry - an introduction. p. 217-227. Holt, Rinehart and Winston, Inc., Fort Worth, TX, USA