• 제목/요약/키워드: hydrogel

검색결과 609건 처리시간 0.028초

인도메타신 소프트 하이드로겔로 부터 약물 방출에 미치는 피부투과촉진제의 영향 (Effect of skin penetration enhancer on the drug release from indomethacin-soft hydrogel)

  • 남현규;이치호;신영희
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권1호
    • /
    • pp.35-40
    • /
    • 2002
  • We prepared a novel dosage form, peel-off type soft hydrogel using poly(vinyl alcohol), and evaluated the effect of skin penetration enhancer on the indomethacin release from soft hydrogel by in vitro permeation and in vivo absorption test. In this study, we used four enhancers-urea, dimethyl urea, 1,1,3,3-tetramethyl urea, and pirotiodecane (1-[2(decylthio)ethyl]azacyclopentane-2-one, $HPE-101^{circledR}$). In addition, we evaluated the primary skin irritation test of soft hydrogel using rabbit. From these results, we could find the pirotiodecane was a prominent enhancer, and soft hydrogel seemed to be safe and have no irritancy.

Synthesis and optimization of immunomodulating hydrogel for biomedical application

  • Muthuramalingam, Karthika;Park, Sanggyu;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.351-355
    • /
    • 2018
  • Treatment towards wound healing, a complex and dynamic process, has been given a great deal of efforts in the last few decades. Focus has been imposed on developing wound dressings that meet the requirements for proper wound healing. In this study, hydrogel made from blends of poly (vinyl alcohol) and ${\beta}$-1,6-branched-${\beta}$-1,3-glucan (beta-glucan) were synthesized by modified solvent casting method for wound dressing application. Optimization of hydrogel composition and analysis of wound dressing parameters such as stability and fluid uptake capacity (in the presence of water, saline and different pH solutions) has been studied. The result indicated that the PVA/beta-glucan hydrogel hold its structural integrity even at alkaline pH (pH~9) and upholds fluids four times of its original weight. Thus, the developed hydrogel is expected to be a promising candidate as wound dressing.

Fabrication Technique of Nanoemulsion Using Silicone Oil and Application as Hydrophilic Ophthalmic Lens

  • Hye-In Park;A-Young Sung
    • 한국재료학회지
    • /
    • 제34권7호
    • /
    • pp.315-320
    • /
    • 2024
  • In order to maximize the function and increase the compatibility of silicone hydrogel lens, this study compared and analyzed the properties of Amino modified silicone oil using mini and microemulsion technique, respectively. Optical and physical properties were evaluated by spectral transmittance, refractive index, water content, oxygen transmittance and contact angle measurements to evaluate the performance of the manufactured hydrogel lens. The spectral transmittance results revealed the copolymerization method lens showed 31 % of the visible light area, which did not satisfy the basic optical properties. However, the lens using the mini and microemulsion materials showed more than 90 % of the visible light area, satisfying the optical characteristics. In addition, all physical properties were superior to a basic hydrogel lens. The mini and microemulsion techniques effectively improved the stability and function of the ophthalmic hydrogel lens and are considered a promising ways of manufacturing an ophthalmic hydrogel contact lens with increased compatibility and stability.

P(MAA-co-PEGMA) 수화젤의 조성과 탑재 pH가 화장품 활성물질의 탑재효율에 미치는 영향 (Effect of P(MAA-co-PEGMA) Hydrogel Compositions and Loading pH on the Loading Efficiency of Cosmetic Active Agents)

  • 이은미;김규식;김범상
    • 폴리머
    • /
    • 제33권5호
    • /
    • pp.441-445
    • /
    • 2009
  • 본 연구에서는 알부틴, ascorbic acid, 아데노신 등과 같은 화장품 활성물질들을 주변 pH 변화에 따라서 선택적으로 방출하게 하는 지능형 전달시스템을 개발하기 위하여, pH 감응성 P(MAA-co-PEGMA) 수화젤을 분산 광중합을 이용하여 평균 크기 약 $2{\mu}m$의 구형 입자로 합성하였으며, 수화젤 입자는 수화젤의 $pK_a$인 PH 5를 전후로 하여 급격한 팽윤비의 변화를 보여주었다. P (MAA-co-PEGMA) 수화젤에 대한 활성물질들의 탑재에 영향을 미치는 요인들을 알아내기 위하여, 수화젤의 MAA와 EG의 조성과 탑재 pH에 따른 활성물질들의 탑재효율을 조사하였다. 수화젤을 구성하는 MAA와 EG의 조성 중 MAA의 함량이 감소함에 따라서 활성물질들의 탑재효율이 증가하였으며, 탑재 pH에 따른 실험에서는 수화젤과 활성물질들 사이에 형성되는 정전기적 반발력이 최소가 되는 pH보다는 수화젤의 팽윤비가 높게 되는 pH에서 탑재효율이 더 높게 나타났다.

미생물 혼입 하이드로젤 지지체 첨가에 따른 자기치유 콘크리트의 물성 변화 (Physical Properties of Self-healing Concrete Mixed with Hydrogel Carrier of Microorganism)

  • 추인엽;우진호;우상균;이병재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.24-29
    • /
    • 2018
  • 콘크리트 자기치유를 목적으로 미생물 혼입 하이드로젤 지지체 첨가에 따른 콘크리트의 특성을 검토하였다. 자기치유 콘크리트의 슬럼프 측정결과, 모든 배합조건에서 목표슬럼프를 만족하였으나, 하이드로젤 지지체의 혼입량 증가에 따라 슬럼프 감소가 있었다. 하이드로젤 지지체 혼입에 따른 공극률의 변화는 미미하였다. 자기치유 콘크리트의 압축강도 평가결과, 하이드로젤 지지체의 혼입은 강도에 영향을 미치지 않았다. 하지만 동일 배합조건하에서 시험체간의 분산값이 하이드로젤 지지체 혼입량 증가에 따라 증가하는 경향을 나타내었다. 하이드로젤 지지체의 혼입에 따른 자기치유 콘크리트의 투수시험 결과, HC-B1.5 배합의 경우 최대 45.6%의 투수계수 회복율을 나타내어 하이드로젤 지지체의 혼입이 투수계수 감소에 효과가 높은 것으로 확인되었다.

해수 전지용 탄소계 촉매와 Hydrogel 촉매의 제조 및 이들의 전기화학적 특성 비교 (Preparation and Electrochemical Performances Comparison of Carbon and Hydrogel Electrocatalysts for Seawater Battery)

  • 김경호;나영수;이만성
    • 전기화학회지
    • /
    • 제21권4호
    • /
    • pp.61-67
    • /
    • 2018
  • 새로운 전자 기기들이 등장함에 따라 시판되고 있는 리튬 이온 배터리 (lithium ion battery, LIB)는 다양한 문제에 직면해 있으며, 이와 관련하여 많은 해결 노력들이 시도되어 왔다. 차세대 이차 전지의 개발이라는 관점에서 LIB의 문제들을 해결하기 위해, 우리는 mesoporous carbon based on waste biomass (MCWB) 와 Polypyrrole (PPY) hydrogel과 같은 두 가지 종류의 촉매를 성공적으로 개발하였다. MCWB와 PPY hydrogel 촉매들은 전형적인 H3 타입 BET isotherm을 나타내었으며, 이는 micropore와 mseopore가 존재한다는 증거이다. 특히 PPY hydrogel을 기반으로 하는 해수 전지(seawater battery, SWB)의 경우, galvanostatic charge-discharge 시험에서 voltage efficiency성능은 MCWB를 적용한 battery보다 높았지만 Pt/C를 적용한 battery보다는 낮았다. 더욱 흥미롭게도, PPY hydrogel 기반의 SWB는 20 사이클(480hrs) 동안 우수한 가역적인 충/방전 특성을 나타내었으며, voltage efficiency성능은 70.32%에서 77.35% 범위의 우수한 특성을 나타내었다. 상기 연구 결과는 차세대 이차 전지를 위한 비귀금속 촉매 개발에 기여하는 결과라고 사료된다.

pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석 (Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator)

  • Wang, Liping;Ren, Jie;Zhang, Xiaoyan;Yang, Xiaoci;Yang, Wu
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.359-364
    • /
    • 2015
  • A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

알칼리 용제를 이용하여 제조한 셀룰로오스 겔의 카드뮴 흡착특성 (Cadmium Adsorption Characteristic of Cellulose-gel Manufacture using Alkali Solvent)

  • 황교정;권구중;양지욱;황원중;황재현;김대영
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.113-122
    • /
    • 2015
  • This study was carried out to investigate the characterization of cadmium adsorption by cellulose hydrogel and aerogel. Hydrogel and aerogel were made from ashless pulp dissolved in alkali hydroxide-urea aqueous solution and manufactured in film and bead types. After regeneration of cellulose, hydrogel went through the process of substitution of organic solvent and freeze-dry in order to make aerogel. SEM was used to analyze the microstructure of hydrogel and aerogel. Experiment was conducted in various concentrations and pH conditions to find out the characteristic of cadmium adsorption. After that, EDS was used to identify existence and distribution of cadmium in hydrogel and aerogel. The result from comparisons of cadmium adsorption shows that bead type aerogel has the maximum cadmium adsorption and film type hydrogel has the minimum cadmium adsorption.

Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co-Acrylamide Superabsorbent Hydrogel

  • Pourjavadi, Ali;Hosseinzadeh, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3163-3172
    • /
    • 2010
  • In this work, a novel method to synthesis of an acrylic superabsorbent hydrogel was reported. In the two stage hydrogel synthesis, first copolymerization reaction of acrylonitrile (AN) and acrylamide (AM) monomers using ammonium persulfate (APS) as a free radical initiator was performed. In the second stage, the resulted copolymer was hydrolyzed to produce carboxamide and carboxylate groups followed by in situ crosslinking of the polyacrylonitrile chains. The results from FTIR spectroscopy and the dark red-yellow color change show that the copolymerization, alkaline hydrolysis and crosslinking reactions have been do take place. Scanning electron microscopy (SEM) verifies that the synthesized hydrogels have a porous structure. The results of Brunauer-Emmett-Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 13.9 nm. The synthetic parameters affecting on swelling capacity of the hydrogel, such as AM/AN weight ratio and hydrolysis time and temperature, were systematically optimized to achieve maximum swelling capacity (330 g/g). The swollen gel strength of the synthesized hydrogels was evaluated via viscoelastic measurements. The results indicated that superabsorbent polymers with high water absorbency were accompanied by low gel strength. The swelling of superabsorbent hydrogels was also measured in various solutions with pH values ranging from 1 to 13. Also, the pH reversibility and on-off switching behavior makes the hydrogel as a good candidate for controlled delivery of bioactive agents. Finally, the swelling of synthesized hydrogels with various particle sizes obey second order kinetics.

Preparation and Swelling Characteristics of Hydrogel from Microbial Poly(${\gamma}-glutamic acid$) by ${\gamma}$-Irradiation

  • Choi, Seong-Hyun;Whang, Kyung-Sook;Park, Jong-Soo;Choi, Woo-Young;Yoon, Min-Ho
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.339-343
    • /
    • 2005
  • Microbial hydrogel was prepared by ${\gamma}-irradiation$ of poly(${\gamma}-glutamic acid$) (PGA) which was produced from Bacillus subtilis BS 62 and it's physico-chemical characteristic was examined. The hydrogel, prepared from 10% PGA with the dose of 48 kGy, was swollen up to 1,370 times of specific water content as dry weight basis. The hydrogels obtained above the dose of 48 kGy appeared to have higher compressive strength but lower specific water content. The period to reach a swelling equilibrium for the hydrogel in deionized water at the temperature range of 4 to $45^{\circ}C$ was about 10 h. The swollen hydrogel was shrunk in ionic solutions with the increase of ionic strength, and the rate of shrinkage was greater in calcium chloride solution than in sodium chloride. Specific water content of the hydrogel was quickly decreased at $80^{\circ}C$, showing a thennally hydrodegradable property.