• Title/Summary/Keyword: hydrodynamic processes

Search Result 101, Processing Time 0.023 seconds

Dependence of Dishing on Fluid Pressure during Chemical Mechanical Polishing

  • Higgs III, C. Fred;Ng, Sum Huan;Zhou, Chunhong;Yoon, In-Ho;Hight, Robert;Zhou, Zhiping;Yap, LipKong;Danyluk, Steven
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.441-442
    • /
    • 2002
  • Chemical mechanical polishing (CMP) is a manufacturing process that uses controlled wear to planarize dielectric and metallic layers on silicon wafers. CMP experiments revealed that a sub-ambient film pressure developed at the wafer/pad interface. Additionally, dishing occurs in CMP processes when the copper-in-trench lines are removed at a rate higher than the barrier layer. In order to study dishing across a stationary wafer during polishing, dishing maps were created. Since dishing is a function of the total contact pressure resulting from the applied load and the fluid pressure, the hydrodynamic pressure model was refined and used in an existing model to study copper dishing. Density maps, highlighting varying levels of dishing across the wafer face at different radial positions, were developed. This work will present the results.

  • PDF

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Effects of Coastal Groundwater Level on Beach Deformation (해안지하수위가 해빈변형에 미치는 영향)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.581-589
    • /
    • 2019
  • In order to understand the characteristics of beach deformation, in this study, numerical simulations were conducted using a 3-D hydro-morphodynamic model (HYMO-WASS-3D) to analyze the characteristics of beach deformation due to the coastal groundwater levels. HYMO-WASS-3D directly analyzed the nonlinear interaction between the hydrodynamic and morphodynamic processes in the coastal area. The simulation results of HYMO-WASS-3D showed good agreement with the experimental results on the changes in the profile of the beach in the surf and swash zones. Then, numerical simulations were conducted to examine the characteristics of beach deformation due to the variation of the level of the coastal groundwater. As a result, the beach profiles were examined in relation to the wave breaking in the surf zone and the wave uprush and backwash in the swash zone due to the differences in the water levels. This paper also discussed the temporal and spatial distributions of the velocities, vorticities, and suspended sediments in the surf and swash zones with various levels of the coastal groundwater.

Typhoon Surge Hindcast in the East China Sea Using a Three-dimensional Numerical Model (3 차원수치(次元數値)모델을 이용(利用)한 동지군해(東支郡海)의 태풍해일(颱風海溢)의 산정(算定))

  • Choi, Byung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.67-78
    • /
    • 1984
  • A three-dimensional hydrodynamic numerical model of the Yellow Sea and the East China Sea was developed to investigate the intermediate scale processes in the region. The model was applied to the three dimensional computation of the typhoon induced currents on the continental: shelf for a 5 days period in Summer, 1978. The circulation pattern showing depth and spatial distribution of currents over the Yellow Sea and the East China Sea is presented and analyzed. This initial study has been undertaken in association with the programme of establishment of real-time forecasting schemes based on dynamic principles.

  • PDF

Oceanic Variables extracted from Along-Track Interferometric SAR Data

  • Kim, Duk-Jin;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.429-434
    • /
    • 2002
  • The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Brags waves and orbital motions of all ocean waves that are longer than Brags waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L- & C-band) ATI SAR data, and have generated surface wave height information.

  • PDF

Numerical Modelling on Hydrodynamics and Diffusion in Suyeong Bay (수영만의 해수순환 및 확산에 관한 수치모델링)

  • JUNG Yeon-Cheol;YOA Suk-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 1992
  • The water-quality control for coastal waters is continuously required in view point of the environmental protection. The purpose of this study is to simulate the hydrodynamic process and the dispersion phenomena of several pollutants in Suyeong Bay, Pusan. The present study employs the depth-averaged 2-dimensional model for nemerical simulation of the hydrodynamics and diffusion. The nemerical solution is obtained by ADI(Altenating Direction Implicit) scheme which is frequently used for tidal current and diffusion computations in the coastal zone. To verify the nunlerical results, the field observations of various water quality parameters such as COD, SS and nutrients were performed during the spring tide. In the results of this study, the computed tidal currents show the clockwise flows for ebb tide and counter-clockwise flows for flood tide. In comparison with the water-qualities in ebb tide and flood tide, there seems to be slightly deteriorated in ebb tide and especially near the estuary of Suyeong River. In flood tide, however, the water-quality near Kwangan Beach is deteriorated. The computed distributions of COD and SS are in god agreements with the observed ones, while those of $PO_4\;^{3-}-P\;and\;NO_3\;^--N$ show slight differences due to the complex transformation processes.

  • PDF

Formation of globular clusters in cosmological radiation hydrodynamic simulation

  • Yi, Sukyoung K.;Kimm, Taysun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.36.1-36.1
    • /
    • 2016
  • This is a presentation of the paper published as Kimm et al. 2016, ApJ, 823, 52. We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with $Mhalo{\sim}4{\times}107Msun$ at z>10 using cosmological radiation-hydrodynamics simulations. We find that very compact (${\leq}1$ pc) and massive (${\sim}6{\times}105Msun$) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient $Ly{\alpha}$ emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short (${\ll}1Myr$), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. The simulated clusters closely resemble the local GCs in mass and size but show a metallicity spread that is much wider than found in the local GCs. We discuss a role of pre-enrichment by Pop III and II stars as a potential solution to the latter issue. Although not without shortcomings, it is encouraging that a naive blind (not tuned) cosmological simulation presents a possible channel for the formation of at least some massive GCs.

  • PDF

NUMERICAL SIMULATIONS OF HH 211: A REFLECTION-SYMMETRIC BIPOLAR OUTFLOW

  • MORAGHAN, ANTHONY;LEE, CHIN-FEI;HUANG, PO-SHENG;VAIDYA, BHARGAV
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.113-114
    • /
    • 2015
  • Recent high-resolution, high-sensitivity observations of protostellar jets have shown many to possess an underlying 'wiggle' structure. HH 211 is one such example where recent sub-mm observations revealed a clear reflection-symmetric wiggle. An explanation for this is that the HH211 jet source is moving as part of a protobinary system. Here we test this assumption by simulating HH211 through 3D hydrodynamic simulations using the pluto code with a molecular chemistry and cooling module, and initial conditions based on an analytical model derived from SMA observations. Molecular chemistry allows us to accurately plot synthetic molecular emission maps and position-velocity diagrams for direct comparison to observations, enabling us to test the observational assumptions and put constraints on the physical parameters of HH211. Our preliminary results show that the reflection-symmetric wiggle can be recreated through the assumption of a jet source being part of a binary system.

Reflection and Transmission Coefficients for Rubble Mound Breakwaters in Busan Yacht Harbor

  • Park, O Young;Dodaran, Asgar Ahadpour;Bagheri, Pouyan;Kang, Kyung Uk;Park, Sang Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.90-94
    • /
    • 2013
  • This paper reports the results obtained for there flection and transmission coefficients on rubble mound breakwaters in Busan Yacht Harbor. A2D physical model test was conducted in the wave flume at the Coastal Engineering Research Laboratory at Pusan National University, Busan, South Korea. In this study, physical model tests were completed to further our understanding of the hydrodynamic processes that surround a rubble mound structure subjected to irregular waves. In particular, the reflection and transmission coefficients, as well as the spectrum transformation, were analyzed. This analysis suggests that with an increase in wave height around a rubble mound, the reflection coefficient drastically increases at each water level (HHW or MSL or LLW). Moreover, when the water level changes from HHW to LLW, the reflection coefficient is suddenly reduced. A further result of the analysis is that the transmission coefficient strongly drops away from the rear of the structure. Finally, in regard to the rubble mound breakwater in Busan Yacht Harbor, a consideration of the reflection and transmission coefficients plays an important role in the design.

Frit-Inlet Asymmetrical Flow Field-Flow Fractionation (FI-ARIFF): A Stopless Separation Technique for Macromlecules and Nanopariticles

  • Mun, Myeong Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.337-348
    • /
    • 2001
  • This article gives an overview of a recently developed channel system, frit-inlet asymmetrical flow field-flow fractionation (FI-AFlFFF), which can be applied for the separation of nanoparticles, proteins, and water soluble polymers. A conventiona l asymmetrical flow FFF channel has been modified into a frit-inlet asymmetrical type by introducing a small inlet frit near the injection point and the system operation of the FI-AFlFFF channel can be made with a great convenience. Since sample components injected into the FI-AFlFFF channel are hydrodynamically relaxed, sample injection and separation processes proceed without interruption of the migration flow. Therefore in FI-AFlFFF, there is no requirement for a valve operation to switch the direction of the migration flow that is normally achieved during the focusing/relaxation process in a conventional asymmetrical channel. In this report, principles of the hydrodynamic relaxation in FI-AFlFFF channel are described with equations to predict the retention time and to calculate the complicated flow variations in the developed channel. The retention and resolving power of FI-AFlFFF system are demonstrated with standard nanospheres and protreins. An attempt to elucidate the capability of FI-AFlFFF system for the separation and size characterization of nanoparticles is made with a fumed silica particle sample. In FI-AFlFFF, field programming can be easily applied to improve separation speed and resolution for a highly retaining component (very large MW) by using flow circulation method. Programmed FI-AFlFFF separations are demonstrated with polystyrene sulfonate standards and pululans and the dynamic separation range of molecular weight is successfully expanded.