• 제목/요약/키워드: hydrodynamic performance

검색결과 492건 처리시간 0.029초

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠 (Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead)

  • 조일형
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계 (Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

소형 자율무인잠수정 "BOTO"의 개발 및 실험 (Development & Test of A Small-Sized Autonomous Underwater Vehicle "BOTO")

  • 변승우
    • 전자공학회논문지
    • /
    • 제49권11호
    • /
    • pp.103-109
    • /
    • 2012
  • 논문에서는 천해역에서 운용가능한 소형의 자율무인잠수정 "BOTO"의 개발과 실해역 자율주행 성능시험에 관한 내용을 다룬다. BOTO의 개발을 위해 6자유도 운동방정식을 이용하여 시뮬레이션을 수행하였으며, 시뮬레이션 결과를 바탕으로 소형 자율무인잠수정을 개발하였다. 시뮬레이션에 사용되는 운동모델의 계수와 주행성능을 확인하기 위해 회류수조에서 저항계수 측정 시험도 수행하였다. 운동모델을 기반으로 무인잠수정의 선회반경 시뮬레이션과 수평면에서의 경로추종을 위한 알고리즘을 적용하여 시뮬레이션을 수행하였고, 설계된 제어기를 이용하여 실해역 자율주행시험을 수행하였다. 실해역 자율주행시험은 선회반경 측정시험과 경로점 추종시험을 실시하였으며, 실해역에서 목표 경로점을 잘 추종하는 것을 확인하였다.

꼬임식 테이프가 설치된 사각 덕트에서 스월유동이 미치는 열전달과 마찰계수 (Effects of Swirl Flow Generated by Twisted Tape on Heat Transfer and Friction Factor in a Square Duct)

  • 강호근;아리바시아크리시나 부트라;안수환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.117-120
    • /
    • 2008
  • Numerical simulations and experiment of a hydrodynamic and thermally developed turbulent flow through square ducts (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are conducted to investigate regionally averaged heat transfer and friction factors. Turbulent swirl flows having Reynolds numbers ranging from 8,900 to 29,000, a rib height-to-channel hydraulic diameter(e/D$_h$) of 0.067, and a length-to-hydraulic diameter(L/D$_h$) of 30, are considered. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape has 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Each wall is composed of isolated aluminum sections, and two cases of surface heating are set. The results show that uneven surface heating enhances the heat transfer coefficient over uniform heating conditions, and square ducts with twisted tape inserts plus interrupted ribs produces the best overall transfer performance.

  • PDF

전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향 (Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter)

  • 황정훈;이종철;김윤제
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

Performance of an Active Stimulating Device Using a Rope Kite or Array in the Cod End to Reduce Juvenile by-catch

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • 제13권2호
    • /
    • pp.182-189
    • /
    • 2010
  • An active stimulating device (ASD) using a rope apparatus may operated by the flow of turbulence inside a cod end, generating variable stimuli in addition to flow-related effects to minimize the by-catch of juvenile fishes. Preliminary testing involved a hydrodynamic effect inside the cod end with a rotating rope kite or conical rope array to generate variable stimuli (visual stimuli, water flow, or physical contact with fish) to change fish position. The experimental rope kite offered more choice in rotating period and range of sweeping action; adjusting the towing line or flow velocity helped to drive fish toward the net panel and encouraged escape. The conical shape of the rope array in the cod end helped to clear a path for fish by disturbing the rigging and providing more contrast between objects, preventing an optomotor response. This enabled more black porgy to be herded toward the net at an early stage of towing. Therefore, either a conical rope array or a rotating rope kite can be used as an effective ASD to prevent juvenile by-catch.

Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torches

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.591-598
    • /
    • 2011
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torches. A series resonant half-bridge topology is presented as a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. A plasma torch rated at 3MW, 2kA and having a physical size of 1m is selected to be the high enthalpy source for a waste disposal system. The steady-state and transient operations of a plasma torch are simulated. The parameters of a Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. The circuit simulation waveform shows that the ripple of the arc current can be maintained within ${\pm}10%$ of its rated value under the presence of a load disturbance. This power conversion configuration provides a high enough ignition voltage, around 5KA, during the ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

유사변환기법을 이용한 3차원 모델의 개발 (Developing a Three-dimensional Spectral Model Using Similarity Transform Technique)

  • 강관수;소재귀;정경태;선우중호
    • 한국해안해양공학회지
    • /
    • 제5권2호
    • /
    • pp.107-120
    • /
    • 1993
  • 본 논문은 유사변환기법을 이용한 새로운 3차원 연직 모우드 전개 모델의 개발에 대하여 기술한다. 기본방정식을 External 모우드와 Internal 모우드로 분리시킨 다음 Internal 모우드식에 Galerkin 방법을 적용하고 구성되는 행열방정식에 유사변환기법을 적용, 기저함수의 계수 값을 구하였다. 최종 얻어지는 기저함수의 계수 값은 마찰장을 제외하고는 비연계되어 시간 간격의 제약을 거의 받지않고 연직 구조를 구할 수 있기 때문에 경제성면에서 탁월하다. 수립된 모델은 어떤 기저함수라도 적용 가능하나 현 단계에서는 Chebyshev 다항식함수가 사용되었으며, 바람응력은 일정한 것으로 가정하였다. 모델 테스트로서 정상상태의 균일한 바람응력이 가해지는 장방형 Basin에 적용하여 모델의 적용 가능성을 검증하였다.

  • PDF