• Title/Summary/Keyword: hydrochloric solution

Search Result 273, Processing Time 0.024 seconds

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

Enhancement of Enzymatic Hydrolysis of Lignocellulosic Biomass by Organosolv Pretreatment with Dilute Acid Solution (효소당화를 위한 목질계 바이오매스의 유기용매 침출 전처리 공정)

  • Kim, Jun Beom;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.806-811
    • /
    • 2016
  • Organosolv pretreatment is the process to frationation of lignocellulosic feedstocks to enhancement of enzymatic hydrolysis. This process has advantages that organic solvents are always easy to recover by distillation and recycled for pretreatment. The chemical recovery in organosolv pretreatment can isolate lignin as a solid material and carbohydrates as fermentable sugars. For the economic considerations, using of low-molecular-weight alcohols such as ethanol and methanol have been favored. When acid catalysts are added in organic solvent, the rate of delignification could be increased. Mineral acids (hydrochloric acid, sulfuric acid, and phosphoric acid) are good catalysts to accelerate delignification and xylan degradation. In this study, the biomass was pretreated using 40~50 wt% ethanol at $170{\sim}180^{\circ}C$ during 20~60 min. As a results, the enzymatic digestibility of 2-stage pretreatment of rigida using 50 wt% ethanol at $180^{\circ}C$ was 40.6% but that of 1-stage pretreatment was 55.4% on same conditions, therefore it is shown that the pretreatment using mixture of the organosolv and catalyst was effective than using them separately.

Synthesis and Ion Exchange Capacity of 4-Vinylpyridine-vinylsulfonic Acid Resin (Para-Vinylpyridine-vinylsulfonic Acid 수지(樹脂)의 합성(合成)과 이온 교환능(交換能))

  • Sung, Nack Do;Song, Hea Young;Park, Byung Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.584-590
    • /
    • 1982
  • Copolymerization of the 4-vinylpyridine with vinylacetate and divinylbenzene initiated by azobis-isobutyronitrile was carried out in DMF in presence $BaCl_2$ at $98^{\circ}C$. Ion exchange res in, poly 4-vinylpyridine-vinylsulfonic acid-divinylbenzene was prepared by sulfonation of 4-vinylpyridine-vinylacetatp-divinylbenzene with concentrated sulfuric acid. The compositions of each synthetic resin were identified by means of ir adsorption spectroscopy. Anion and cation capacities of 4-vinylpyridine-vinylsulfonic acid-divinylbenzene ion exchanger were 2.5meq/g and 4.8meq/g, respectively. Adsorption of Cd(II) and Cu(II) ions have showed larger quantity in alkalie media. A study also was made of the influence of alcohol on the distribution coefficient of Cd(II) and Cu(II) ions between the synthetic ion exchanger, and solution containing hydrochloric acid, various alcohols and water. The distribution coefficients of metal ions decrease generally as the number of branches of carbon in the molecule of butyl alcohol increase. (t-BuOH

  • PDF

Effects of Oxalic and L-ascorbic acids on Iron Removal form Iron-bearing Illite (일라이트 분체 내에 함유된 산화철 제거에 옥살산과 L-아스코르브산이 미치는 영향)

  • Lee, Won-Pyo;Kang, Il-Mo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.141-151
    • /
    • 2007
  • This study was focused on iron removal from illite by L-ascorbic and oxalic acids. Iron has been shown as a secondary mineral such as iron oxides and hydroxides in illite ores. It is also known as a primary agent to degrade brightness index of the ores. Methods such as physical separation and chemical leaching with strong inorganic acids have been widely used to remove the iron from the ores. However, these methods are expensive and give rise to environmental problems. In this study, we examined an alternative method using solutions with different set of combination of sulfuric, hydrochloric, L-ascorbic, and oxalic acids. Compared to chemical treatments with only inorganic acids, our results demonstrate that an addition of L-ascorbic acid in inorganic acids results in decreasing both total concentrations of the inorganic acids and time for the treatments. The treatment with 0.15 M L-ascorbic acid and 0.25 M sulfuric acid in solution for 60 min significantly improved the brightness index from 42.4% to 74.4%. This improvement is similar to that of treatment with only 2.5 M sulfuric acid alone for 150 min. Mineralogical and chemical analyses were performed to compare the effect of acid leaching on illite powders. No obvious differences are observed in the mineralogical characteristics and particle size distributions of the samples. These results suggest that the treatment with the addition of L-ascorbic acid in sulfuric acid could effectively remove iron without modifying the physicochemical properties of illite under conditions used in this study.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex(Cr(VI)-Isoquinoline) (Cr(VI)-헤테로고리 착물(Cr(VI)-Isoquinoline)를 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young-Cho;Kim, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6000-6007
    • /
    • 2013
  • Cr(VI)-heterocyclic complex[Cr(VI)-isoquinoline] was synthesized by the reaction between of heterocyclic compound(isoquinoline) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using Cr(VI)-isoquinoline in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order : cyclohexene$CH_3$, m-Br, m-$NO_2$). Electron- donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.69(308K). The observed experimental data have been ratiolized. The hydride ion transfer causes the prior formation of a chromate ester in the rate-determining step.

Studies on the Elimination of Aflatoxin by Various Treatment (각종 처리에 의한 Aflatoxin의 분해에 관한 연구)

  • Lee, Chung-Hee;Chung, Yung-Chai;Chung, Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.201-205
    • /
    • 1973
  • In order to eliminate aflatoxin in foodstuffs, the effects of the treatment by various pH conditions, acid and alkali, and salt on each temperature and time were studied in this experiment and the results were as follows: 1) In the low pH, aflatoxins were much more destroyed than high pH. The destruction of aflatoxins was significantly increased by heat in the same pH levels. 2) BY the treatment of 1.5 and 10% of sodium hydroxide and ammonia, aflatoxins were completely eliminated, but $40{\sim}80%$ of aflatoxins were eliminated by the treatment of 1.5 and 10% of acetic acid, hydrochloric acid and sulfuric acid. 3) By the treatment of aflatoxin in bile acid and artificial gastric juice, aflatoxins were completly eliminated and 75% respectively. 4) By the boiling $(100^{\circ}C)$ for 30 minutes in salt solution, $39{\sim}55%$ of aflatoxins was eliminated and no variation was observed as the concentration.

  • PDF

Effects of Chicken Feet Gelatin on Physicochemical and Sensory Properties of Restructured Chicken Jerky (닭발 젤라틴 첨가가 재구성 닭고기 육포의 이화학적 및 관능특성에 미치는 영향)

  • Kim, Hack-Youn;Lee, Jong-Wan;Kim, Ji-Hyuk;Kim, Gye-Woong
    • Korean Journal of Poultry Science
    • /
    • v.42 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • This study aimed to investigate the effect of chicken feet gelatin on physicochemical and sensory properties of restructured chicken jerky. Chicken feet swollen with hydrochloric solution (0.1 N HCl) were neutralized with flowing tap water, and gelatin was extracted with hot water at $75^{\circ}C$. The obtained chicken feet gelatin was dehydrated via freeze-drying. Restructured chicken jerky samples were prepared by adding the following amount of chicken feet gelatin 0%, 1%, 2%, 3%. The moisture and protein content of samples increased with an increased chicken feet gelatin. In addition, the drying yield of the samples increased with an increase in chicken feet gelatin. However, the shear force of samples significantly decreased with the increasing chicken feet gelatin content and the shear force of the control samples was the highest (P<0.05). No significant differences, except for color, were observed in the sensory analysis among the treatments. Therefore, usages of chicken feet gelatin can provide improved quality characteristics of restructured chicken jerky.

Evaluation of Exposure Indicators for Plants by Silicon Tetrachloride Release (사염화규소 누출사고지점 주변 식물에 대한 노출지표 평가)

  • Park, Jae-Seon;Kim, Jee-Young;Kim, Myeong-Ock;Park, Hyun-Woo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.288-292
    • /
    • 2017
  • BACKGROUND: Silicon tetrachloride reacts with moisture in the atmosphere to generate hydrogen chloride, which affects the environment. Since silicon tetrachloride and its by-products are dispersed in the atmosphere in a short time after the silicon tetrachloride release into the atmosphere, it is difficult to directly assess the extent of environmental impact. In the present study, the exposure test of silicon tetrachloride or hydrogen chloride was examined in order to establish the criterion of the range affected by the silicon tetrachloride release, and the actual crops in the area exposed to silicon tetrachloride leakage were analyzed. METHODS AND RESULTS: For the experiment of exposure to silicon tetrachloride or hydrogen chloride, the leaves of red-pepper and corn were used in glass sealed containers. In the actual accident area, 59 samples from 10 different kinds of crops were collected. The pretreatment of the sample was performed by freezing and grinding, and then extracted using distilled water. The pH and concentration of chloride ($Cl^-$) ion of the extracted solution were measured using pH meter and ion chromatograph, respectively. CONCLUSION: Exposure to silicon tetrachloride caused visible damage, increasing the concentration of chloride ion, and decreasing the pH as well as hydrochloric acid. In the actual crops of the affected area, the tendency was the same as the result of the laboratory test, and the range of influence could be estimated through the concentration of $Cl^-$ ion over 2,000 mg/kg, and the correlation evaluation between the concentration of $Cl^-$ and pH. Therefore, the concentration of $Cl^-$ ion and the correlation between $Cl^-$ and pH would be considered as the factors to estimate the influence range of silicon tetrachloride release.

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF