• Title/Summary/Keyword: hydrocarbon immobilization

Search Result 4, Processing Time 0.023 seconds

Photosynthetic Activity, and Lipid and Hydrocarbon Production by Alginate-Immobilized Cells of Botryococcus in Relation to Growth Phase

  • Yashverry, Singh
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.687-691
    • /
    • 2003
  • Whole-cell immobilization of the hydrocarbon rich microalgae, Botryococcus braunii and B. protuberans, in alginate beads under air-lift batch cultures resulted in a significant increase in chlorophyll, carotenoid, dry weight, and 1ipid contents at stationary and resting growth phases, as compared to free cells. Photosynthetic activity in both the species, of Botryococcus was enhanced, relative to free cells, at any growth phase of cultures. Immobilization exerted a protective influence on ageing of the cultures as reflected by higher chlorophyll and dry weight contents. Entrapment also stabilized the chlorophyll and carotenoid contents even at stationary and resting phases as compared to free cells in both the species.

Biodegradation of Hydrocarbon Contamination by Immobilized Bacterial Cells

  • Rahman Raja Noor Zaliha Abd.;Ghazali Farinazleen Mohamad;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.354-359
    • /
    • 2006
  • This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.

Carbon Containing Compositions

  • Mansurova, R.M.;Mansurov, Z.A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.5-15
    • /
    • 2001
  • The experiment established optimal conditions for over-carbonization. With the use of the electron microscopy and X-ray phase analysis the regularities of carbon deposit formation in process of methane and propane pyrolysis on the zeolites, Kazakhstan natural clays, chrome and bauxite sludge containing metal oxides of iron subgroup, have been studied. In process of over-carbonization the trivalent iron was reduced to metal form. In addition, the carbon tubes of divers morphology had been impregnated with ultra-dispersed metal particles. The kinetic parameters of carbon formation in process of methane decomposition on the zeolite - CoO mixture surface were investigated by method of thermo-gravimetric analysis. The morphology and structure of formed carbon fibrils, with the metal particles fixed at their ends, have been investigated, the formation of branched carbon fibrils pattern, so called octopus, being found. Also, the walnut shells and grape kernel carbonization, their immobilization by the cells of selective absorption of heavy metal and sulfur dioxide ions have been studied. The example of metal-carbon composites used as adsorbents for wastewater purification, C$_3$- C$_4$ hydrocarbon cracking catalysts and refractory materials with improved properties have been considered.

  • PDF

Bioluminescence Activity of Toluene Analogs by Alginate-immobilized Pseudomonas putida mt-2 KG1206 (고정화한 유전자 재조합 균주 Pseudomonas putida mt-2 KG1206의 톨루엔 계열 화합물에 대한 생물발광 활성 조사)

  • Kong, In-Chul;Jung, Hong-Kyung;Ko, Kyung-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • In this study, the applicability of alginate-immobilized Pseudomonas putida mt-2 KG1206 on the environments, contaminated with toluene analogs was conducted. Genetically engineered strain KG1206 produces light by direct (m-toluate, benzoate) and indirect (toluene, xylenes) inducers. The protocol for the alginate-immobilization was determined in terms of the cell to alginate ratio, solution, proper number of alginate beads, and other conditions. Maximum bioluminescences of five chemicals by immobilized strain were generally observed in following orders: m-toluate > p-xylene > toluene > o-xylene > m-xylene. In relationship between bioluminescence activity and inducer reduction, initial m-toluate (5 mM) in solution was removed approximately 48% of initial at 5 h exposure, showing continuous decrease of inducer chemical in solution. These results of study with alginate-immobilized beads would be useful, especially, for biomonitoring of contaminated environments with specific compounds, such as petroleum hydrocarbon compounds including toluene analogs.