• Title/Summary/Keyword: hydraulic-thermal behavior

Search Result 118, Processing Time 0.023 seconds

LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY

  • Baek, Won-Pil;Kim, Yeon-Sik;Choi, Ki-Yong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.775-784
    • /
    • 2009
  • This paper summarizes the tests performed in the ATLAS facility during its first two years of operation (2007${\sim}$2008). Two categories of tests have been performed successfully: (a) the reflood phase of the large-break loss-of-coolant accidents in a cold leg, and (b) the breaks in one of four direct vessel injection lines. Those tests contributed to understanding the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing an evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Several important and interesting phenomena have been observed during the tests. In most cases, the ATLAS shows reasonable accident characteristics and conservative results compared with those predicted by one-dimensional safety analysis codes. A wide variety of small-break LOCA tests will be performed in 2009.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Containment Closure Time Following the Loss of Shutdown Cooling Event of YGN Units 3&4

  • Seul, Kwang-Won;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.68-79
    • /
    • 1999
  • The YGN Units 3&4 plant conditions during shutdown operation were reviewed to identify the possible event scenarios following the loss of shutdown cooling (SDC) event. For the five cases of typical reactor coolant system (RCS) configurations under the worst event sequence, such as unavailable secondary cooling and no RCS inventory makeup, the thermal hydraulic analyses were performed using the RELAP5/MOD3.2 code to investigate the plant behavior following the event. The thermal hydraulic analyses include the estimation of time to boil, time to core uncovery, and time to core heat up to determine the containment closure time to prevent the uncontrolled release of fission products to atmosphere. The result indicates that the containment closure is recommended to be achieved within 42 minutes after the loss of SDC for the steam generator (SG) inlet plenum manway open case or the large cold leg open case under the worst event sequence. The containment closure time is significantly dependent on the elevation and size of the opening and the SG secondary water level condition. It is also found that the containment closure needs to be initiated before the boiling time to ensure the survivability of the workers in the containment. These results will provide useful information to operators to cope with the loss of SDC event.

  • PDF

Steam generator performance improvements for integral small modular reactors

  • Ilyas, Muhammad;Aydogan, Fatih
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1669-1679
    • /
    • 2017
  • Background: Steam generator (SG) is one of the significant components in the nuclear steam supply system. A variety of SGs have been designed and used in nuclear reactor systems. Every SG has advantages and disadvantages. A brief account of some of the existing SG designs is presented in this study. A high surface to volume ratio of a SG is required in small modular reactors to occupy the least space. In this paper, performance improvement for SGs of integral small modular reactor is proposed. Aims/Methods: For this purpose, cross-grooved microfins have been incorporated on the inner surface of the helical tube to enhance heat transfer. The primary objective of this work is to investigate thermal-hydraulic behavior of the proposed improvements through modeling in RELAP5-3D. Results and Conclusions: The results are compared with helical-coiled SGs being used in IRIS (International Reactor Innovative and Secure). The results show that the tube length reduces up to 11.56% keeping thermal and hydraulic conditions fixed. In the case of fixed size, the steam outlet temperature increases from 590.1 K to 597.0 K and the capability of power transfer from primary to secondary also increases. However, these advantages are associated with some extra pressure drop, which has to be compensated.

Analysis of Reflux Cooling in the SG U-Tubes Under Loss of RHRS During Midloop Operation with Primary System Partly Open

  • Son, Young-Seok;Kim, Won-Seok;Kim, Kyung-Doo;Chung, Young-Jong;Chang, Won-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.112-127
    • /
    • 1998
  • The present study is to assess the applicability of the best-estimate thermal-hydraulic codes, RELAP5/MOD3.2 and CATHARE2V1.3U, to the analysis of thermal-hydraulic behavior in PWRs during midloop operation following the loss of RHRS. The codes simulate an integral test, BETHSY 6.94, which was conducted in the large scale test facility of BETHSY in France. The test represents the accident where the loss of RHRS occurs during midloop operation with the pressurizer and upper head vents open and the sight level indicator broken. Besides, the hot legs are half filled with water and the upper parts of the primary cooling system are filled with nitrogen, with a letdown line open and only one SG available. The purposes of this study are to understand the physical phenomena associated with reflux cooling in the 5G U-tubes when noncondensable gas is present under low pressure and to assess the applicability of the codes to simulate the loss of RHRS event by comparing the predictions with the test results. The results of the study may contribute to actual applications for plant safety evaluation and description of the emergency operating procedure.

  • PDF

Thermal-hydraulic study of air-cooled passive decay heat removal system for APR+ under extended station blackout

  • Kim, Do Yun;NO, Hee Cheon;Yoon, Ho Joon;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.60-72
    • /
    • 2019
  • The air-cooled passive decay heat removal system (APDHR) was proposed to provide the ultimate heat sink for non-LOCA accidents. The APDHR is a modified one of Passive Auxiliary Feed-water system (PAFS) installed in APR+. The PAFS has a heat exchanger in the Passive Condensate Cooling Tank (PCCT) and can remove decay heat for 8 h. After that, the heat transfer rate through the PAFS drastically decreases because the heat transfer condition changes from water to air. The APDHR with a vertical heat exchanger in PCCT will be able to remove the decay heat by air if it has sufficient natural convection in PCCT. We conducted the thermal-hydraulic simulation by the MARS code to investigate the behavior of the APR + selected as a reference plant for the simulation. The simulation contains two phases based on water depletion: the early phase and the late phase. In the early phase, the volume of water in PCCT was determined to avoid the water depletion in three days after shutdown. In the late phase, when the number of the HXs is greater than 4089 per PCCT, the MARS simulation confirmed the long-term cooling by air is possible under extended Station Blackout (SBO).

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Analysis of LOFT LP-02-6 Experiment Using RELAP5/MOD3.2

  • Park, Tong-Soo;Lee, Jae-Hoon;Park, Byung-Suh;Cho, Chang-Sok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.357-362
    • /
    • 1996
  • LOFT LBLOCA test, LP-02-6 was analyzed using RELAP5/MOD3.2. It has a distinguished thermal-hydraulic phenomenon of a positive bottom-up core flow in tile blowdown phase. A modified nodalization which is based on that used in LP-LB-1 calculation by Lubbesmeyer was used in the calculation. RELAP5/MOD3.2 predicted overall system hydraulic behavior relatively well. However, the bottom-up quenching in the middle part of the core was not predicted sufficiently. It was demonstrated also that the peak cladding temperature can be predicted well by adjusting a discharge coefficient. But more improvements are needed in order to apply this code to actual plants with less user dependency.

  • PDF

Improvement of Steam Generator Model for DSNP with Two-Region Tube Bundle Model for CANDU Transient Simulation (2영역 튜브모텔을 고려한 CANDU 시뮬레이션용 DSNP 증기발생기 모델 개선)

  • Cheon, Im-Jae;Seung, Seo-Jae
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.135-140
    • /
    • 1994
  • An improved steam generator model has been developed for the DSNP simulation of normal operational transient behavior of CANDU nuclear power plant. For more realistic prediction of steam generator behavior during transient, tube bundle region is divided into two separate control volumes, subcooled region and saturated region, and the variation of thermal hydraulic properties in the control volume is accounted for more realistic estimates of outlet enthalpy of each control volume. Test results for typical CANDU operational transient case show reasonable transient behavior of steam generator with overall CANDU operation and improved operational characteristics of steam generator with power variation.

  • PDF

A Concise Design for the Irradiation of U-10Zr Metallic Fuel at a Very Low Burnup

  • Guo, Haibing;Zhou, Wei;Sun, Yong;Qian, Dazhi;Ma, Jimin;Leng, Jun;Huo, Heyong;Wang, Shaohua
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.734-743
    • /
    • 2017
  • In order to investigate the swelling behavior and fuel-cladding interaction mechanism of U-10Zr alloy metallic fuel at very low burnup, an irradiation experiment was concisely designed and conducted on the China Mianyang Research Reactor. Two types of irradiation samples were designed for studying free swelling without restraint and the fuel-cladding interaction mechanism. A new bonding material, namely, pure aluminum powder, was used to fill the gap between the fuel slug and sample shell for reducing thermal resistance and allowing the expansion of the fuel slug. In this paper, the concise irradiation rig design is introduced, and the neutronic and thermal-hydraulic analyses, which were carried out mainly using MCNP (Monte Carlo N-Particle) and FLUENT codes, are presented. Out-of-pile tests were conducted prior to irradiation to verify the manufacturing quality and hydraulic performance of the rig. Nondestructive postirradiation examinations using cold neutron radiography technology were conducted to check fuel cladding integrity and swelling behavior. The results of the preliminary examinations confirmed the safety and effectiveness of the design.