• Title/Summary/Keyword: hydraulic support

Search Result 154, Processing Time 0.023 seconds

Structural response analysis in time and frequency domain considering both ductility and strain rate effects under uniform and multiple-support earthquake excitations

  • Liu, Guohuan;Lian, Jijian;Liang, Chao;Zhao, Mi
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.989-1012
    • /
    • 2016
  • The structural dynamic behavior and yield strength considering both ductility and strain rate effects are analyzed in this article. For the single-degree-of-freedom (SDOF) system, the relationship between the relative velocity and the strain rate response is deduced and the strain rate spectrum is presented. The ductility factor can be incorporated into the strain rate spectrum conveniently based on the constant-ductility velocity response spectrum. With the application of strain rate spectrum, it is convenient to consider the ductility and strain rate effects in engineering practice. The modal combination method, i.e., square root of the sum of the squares (SRSS) method, is employed to calculate the maximum strain rate of the elastoplastic multiple-degree-of-freedom (MDOF) system under uniform excitation. Considering the spatially varying ground motions, a new response spectrum method is developed by incorporating the ductility factor and strain rate into the conventional response spectrum method. In order to further analyze the effects of strain rate and ductility on structural dynamic behavior and yield strength, the cantilever beam (one-dimensional) and the triangular element (two-dimensional) are taken as numerical examples to calculate their seismic responses in time domain. Numerical results show that the permanent displacements with and without considering the strain rate effect are significantly different from each other. It is not only necessary in theory but also significant in engineering practice to take the ductility and strain rate effects into consideration.

Optimal Design for Minimizing Weight of Housing of Hydraulic Breaker (유압 브레이커의 중량 감소를 위한 하우징 최적설계)

  • Park, Gyu-Byung;Park, Chang-Hyun;Park, Yong-Shik;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.207-212
    • /
    • 2011
  • A hydraulic breaker is an attachment installed at the end of excavator arm and is used for breaking. As per the authors' knowledge, there have been no research results on reducing the weight of the hydraulic breaker even though this weight reduction is very important for improving the performance of the excavator. In this study, we minimize the weight of the housing of the hydraulic breaker under normal operating conditions, while the maximum stress of the housing is lower than the allowable stress. A meta-model, which is generated by using the CAE results for the sampling design points determined by an orthogonal array, is used to solve the minimization problem. The weight of the housing according to the optimal design is found to be lower than the original weight by 4.8% while satisfying the constraint on the maximum stress.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Design Review of Launch Complex Thermostatting System (발사대 온도 제어 시스템 설계 분석)

  • Choi, Sang-Ho;Ok, Ho-Nam;Kim, Seong-Lyong;Kim, Young-Hoon;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2012
  • In this study, design of LCTS(Launch Complex Thermostatting System), which is one of ground support equipments for KSLV-I, is analyzed based on CDP(Critical Design Package) provided by Russia. The thermo-hydraulic design of air preparation compartment and hydraulic design of air heating & distribution compartment performed. Also numerical simulation of air heating & distribution compartment was conducted and compared with actual measurement data. Finally, insulation design of system was analyzed. Designing method of LCTS will be helpful in developing or modifying LCTS for new launch vehicle.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

Development of Flood Routing Model in the Navigation Waterway to Support Operations of Weir and Flood Gate (가동보 및 배수문운영을 고려한 주운수로 홍수위 산정모형 구축)

  • Noh, Joon-Woo;Park, Myung-Ki;Shim, Myung-Geun;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.959-968
    • /
    • 2012
  • HEC-RAS has been applied to simulate water level variation in the Ara waterway during the flood season. To support decision making necessary for operation of the hydraulic structures especially during the flood season, it is important to consider various factors such as water level of the Han River, Gulpo River, and tidal level of the west sea in conjunction with operation of the hydraulic structures such as the Gyulhyun Weir, the West sea gate, and pumping stations. Especially for operation of the west sea gate, the Rule-script option was employed to determine the opening height considering the variation of the water level in the waterway and the west sea simultaneously. For model verification, comparison of water level computed at the upstream and downstream of the regulation weir shows a good agreement with observed data measured during the flood event in September 2010. The HEC-RAS model developed in this study will contribute to support operation of the waterway during the flood season.

Study on rock reinforcement process and the effect of produced strength right after rockbolt installation (록볼트의 타설 직후의 강도발현 과정 및 효과에 관한 연구)

  • Itoh, Jhun;Park, Hae-Geun;Kim, Dong-Wan;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 2003
  • For the huge section of tunnel, it is highly required to observe the role of each rock support and their effect of rock reinforcement in order to investigate more reasonable rock support structure. Especially for unstable tunnel situation with no shotcrete strength right after an excavation, sufficient investigation is needed for rock support structure. In this paper, we clarify the relations of compressive strength and material age, cohesion strength and material age, and cohesion stiffness and material age of grout with time-dependence through tests and numerical analysis simulation with trial rock mass considering hardening of bolt grouting material. By means of this process, effect of rock reinforcement for rockbolt is investigated right after an excavation and modelling and physical constants of young aged rockbolts are obtained. Additionally, the effect of rock reinforcement with hydraulic tensile friction bolt is examined right after an excavation, which grout effect is no need to be waited.

  • PDF

Root Cause Analysis of Axial ODSCC of Steam Generators Tubes of OPR1000 (한국표준형 원전 증기발생기 전열관 축방향 ODSCC 발생원인 분석)

  • Kim, Hong-deok;Park, Su-ki;Yim, Chang Jae;Chung, Han Sub
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.83-88
    • /
    • 2010
  • Domestic nuclear steam generators with Alloy 600 HTMA tubes have experienced axial cracking at eggcrate tube support plates(TSPs). The axial stress corrosion cracks were observed at the crevice between outside of tubes and eggcrate TSPs. The root cause of axial cracking was investigated by thermal hydraulic analysis and sludge distribution diagnosis. It is suggested that deposition of sludge at eggcrate TSPs could increase the outside surface temperature of tube and promote the enrichment of impurities at crevice, and thus accelerate cracking. Additionally strategy for reducing the sludge ingress to steam generators is discussed.

  • PDF

Study on Characteristics of Subchannel Analysis Code at Low Flow Steam Line Break Condition

  • Kwon, Hyuk-Sung;Lim, Jong-Seon;Hwang, Dae-Hyun;Chun, Tae-Hyun;Park, Jong-Ryul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.403-408
    • /
    • 1996
  • The subchannel analysis was performed to verify the behavior of hot channel characteristics and obtain the information to support the core thermal-hydraulic behavior at post-trip steam line break with low flow condition. During this postulated accident, buoyancy-induced cross flow occurs, and the coupled nuclear and thermal-hydraulic interactions become important. The code predictions with TORC are in good agreement with the test data. Under such conditions, the mass flow increase in the hot channel by buoyancy-induced cross flow depends on the parameter $GR^{*}\;/\;Re^2$, and buoyancy effect becomes more noticeable as $GR^{*}\;/\;Re^2$ increases.

  • PDF

Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System (Pilot 혐기-호기 공정을 이용한 염색폐수의 생물학적 처리)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2001
  • An anaerobic sludge-aerobic fixed-bed biofilm(packed with ceramic support carrier of 1 inch size) reactor system was built up to treat textile wastewater. The efficiency of reactor system was examined by determining the effects of textile wastewater ratio(from 25% to 100% at HRT 24 h). The influent range of SCOD concentration and color were 1,036~1,357 mg/L, and 1,487~1,853 degree, respectively. When textile wastewater ratio was 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% and the removal efficiency of the whole system were 75.8%. Color removal efficiency by the anaerobic stage were 45.4%(soluble color), and the removal efficiency of the whole system were 70.2%. In the A/A reactor system, the aerobic stage played an important role in removing both color and COD as well as anaerobic stage.

  • PDF