• Title/Summary/Keyword: hydraulic stimulation

Search Result 16, Processing Time 0.021 seconds

A Hydro-Mechanical Basic Study on the Effect of Shut-in on Injection-Induced Seismic Magnitude (유체 주입 중단이 유발 지진 규모에 미치는 영향에 대한 수리역학적 기초 연구)

  • Yim, Juhyi;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.203-218
    • /
    • 2022
  • A hydro-mechanical study was performed to analyze the relationship between the magnitude of injection-induced seismicity and shut-in. In hydraulic analysis, the suspension of fluid injection makes the pore pressure gradient smaller while the pore pressure at the pressure front can reach the critical value for several hours after shut-in, which leads to the additional slip with wider area than during injection. The hydro-mechanical numerical analysis was performed to model the simplified fault system, and simulated the largest magnitude earthquake during shut-in stage. The effect of the abrupt suspension of fluid injection on the large magnitude earthquake was investigated in comparison with the continuous injection. In addition to the pore pressure distribution, it was found that the geometry of multiple faults and the stress redistribution are also important in evaluating the magnitude of the induced seismicity.

Case Studies of Enhanced Geothermal System: Fenton Hill in USA and Hijiori in Japan (인공저류층 지열시스템(EGS) 연구사례: 미국 Fenton Hill과 일본 Hijiori 사례 연구)

  • Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2013
  • The importance of renewable energy has increased continuously due to the energy insecurity and the necessity of reducing carbon dioxide which is causing global climate change. In such a situation, the Pohang Enhanced Geothermal System (EGS) power plant project which is launched in December 2010 shall be a new opportunity for the development of EGS related technologies in Korea. In this paper, the case studies of Fenton Hill project in the USA and Hijiori project in Japan are introduced in order to help a part of the domestic EGS demonstration project. As a result, it could be helpful to minimize the trial and error of the domestic EGS project by acquiring the achievements and limitations of existing EGS projects.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

Overview of Geothermal Energy Projects in Europe and the GEISER Project on Induced Seismicity (지열에너지와 관련한 유럽에서의 연구프로젝트 소개와 유도지진에 관한 GEISER프로젝트의 주요연구결과에 대한 사례연구)

  • Yoon, Jeoung Seok;Bruhn, David;Zang, Arno
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.581-592
    • /
    • 2013
  • This article provides an overview on the geothermal energy research in Europe and one of the EU funded projects 'GEISER (Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs)' in which the authors were involved. More details are given for description of GEISER, in particular, about aims and discussions and how the project was managed. Emphasis is given to one of the work packages 'Induced Seismicity and Large Magnitude Events (LME)' and results of this work package are summarized. This article intends to summarize the lessons learned in the GEISER project and give recommendations to future geothermal projects by creating Enhanced Geothermal Systems hydraulic stimulation where induced seismicity issues are expected to be a major issue and obstacle.

Estimation of Permeability and Initial Pressure in Reservoir by DFIT Data Analysis (DFIT 자료 해석을 통한 저류층의 투과도 및 초기압력 추정)

  • Kim, Tae Hong;Lee, Sung Jun;Lee, Kun Sang
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.169-179
    • /
    • 2013
  • Well testing in unconventional reservoirs, such as tight or shale gas formations, presents considerable challenges. It is difficult to estimate the reservoir properties in ultra-low permeability formation because of poor inflow prior to stimulation and excessive test duration. Moreover, radial flow may not develop in hydraulically fractured horizontal wells. For these reasons, the cost of test is high and the accuracy is relatively low. Accordingly, industry is turning to an alternate testing method, diagnostic fracture injection test (DFIT), which is conducted prior to the main hydraulic fracture treatments. Nowadays, DFIT are regarded as the most practical way to obtain good estimates of reservoir properties in unconventional reservoirs. Various methods may be used for interpreting DFIT data. This paper gives an explanation of those methods in detail and examines three actual field data. These show how various analysis methods can be applied to consistently interpret fracture closure pressure and time, as well as before and after closure flow regimes and reservoir properties from field data.

Force Fighting Suppressive Technique of Dual Redundant Asymmetric Tandem Electro-Hydrostatic Actuator for Aircraft (항공기용 이중화 비대칭형 직렬 전기-정유압 구동기의 Force Fighting 억제 기법)

  • Song, Woo Keun;Kim, Sang Seok;Choi, Jeong Seok;Lee, JungUn;Lee, Jong Cheol;Lee, Jun won;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.62-69
    • /
    • 2022
  • EHA (Electro-Hydrostatic Actuator) is more energy efficiency than a centralized hydraulic system. In particular, the EHA used for aircraft has a redundant design in preparation for failure scenario. Also, due to the aircraft's internal space limitation, the actuator's length must be optimized. Therefore, a series configuration of double rod and single rod cylinder is advantageous. However, due to the asymmetry of the cross-sectional area of the piston, the force fighting phenomenon between the two cylinder areas occurs during redundant operation with a general control system. In this paper, the force fighting phenomenon of redundant EHA was simulated. A controller with load compensation and a force control-based position controller as a method to suppress its stimulation