• Title/Summary/Keyword: hydraulic pump

Search Result 689, Processing Time 0.031 seconds

Reduction in Pressure Ripples for a Bent-Axis Piston Pump (사축식 액셜 피스톤 펌프의 압력맥동 감소)

  • Kim, Kyung-Hoon;Sohn, Kwon;Jang, Joo-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Bent-axis piston pump have been commonly used in hydraulic systems because of high pressure level, best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the bent-axis piston pump require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the bent-axis piston pump was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a parallel line could reduce the discharge pressure wave of the pump well. The analysis model of the bent-axis piston pump developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

Integrated Control Algorithm of Hydraulic Pump with Electric Motor to Improve Energy Efficiency of Electric Excavator (전기굴삭기 에너지 효율 향상을 위한 유압펌프-전동기 통합 제어 알고리즘)

  • Lee, Jeeho;Lee, Jihye;Lee, Hyeongcheol;Oh, Chang Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • An electric excavator consumes battery energy to drive an electric motor attached to a hydraulic pump to generate hydraulic power. In a conventional hydraulic excavator, the hydraulic pump is controlled by regulators, which are used to optimize the diesel engine efficiency. Because of a lack of battery energy capacity, an electric excavator controller should consider not only the electric motor efficiency but also the hydraulic pump efficiency. Thus, electric motor and hydraulic pump efficiency maps were constructed. An optimal operating map (OOM) was created based on the most efficient operating points under each input condition. An integrated control algorithm controlled the speed of the electric motor and displacement of the hydraulic pump according to the OOM. To confirm the utility of this algorithm, a model-in-the-loop simulator for the algorithm with an electric excavator was established. The simulation results showed that the integrated control algorithm improved the energy efficiency of an electric excavator.

Qualification Test of Hydraulic Pump for Aircraft (항공기용 유압펌프 인증시험)

  • Kim, Jin-Won;Hong, Young-Ji;Kim, Keun-Bae;Park, Jong-Hoo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.54-60
    • /
    • 2009
  • Qualification test items and those certification procedures of aircraft hydraulic pump are investigated in this report. Weight minimization through optimal design of aircraft hydraulic pump and its certification process investigation are very important. In this report, some fundamental performance data was presumed for the normal aircraft hydraulic pump, and then basic procedures for qualification tests are presented.

  • PDF

Effect of surface hardness on piston wear in the oil hydraulic piston pump (유압 피스톤 펌프의 피스톤 마모에 대한 표면경도의 영향)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.340-345
    • /
    • 2001
  • Surface hardness is one of the major sources on wear in the oil hydraulic axial piston pump. To increase the performance of the oil hydraulic axial piston pump, it is need to know the surface layer characteristics in the sliding contact parts of them. This paper reports an experimental study on surface treatment characteristics in the piston of the oil hydraulic axial piston pump. We investigated surface wear with not only surface hardness and surface roughness but also material of the piston. We obviously observed that the surface hardness of piston in the oil hydraulic axial piston pump plays an important role to high power density and remain long life.

  • PDF

A Study on the Reduction in Pressure Ripples for a Bent-Axis Piston Pump by a Phase Interference (위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력맥동 감소에 대한 연구)

  • 김경훈;최명진;이규원;장주섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.103-110
    • /
    • 2004
  • Pressure ripples yield noise and vibration in hydraulic pipelines, which are inevitably generated by a fluctuation of flow rate in the pump mechanism, and such noise and vibration deteriorate the stability and accuracy of hydraulic systems. To reduce the pressure ripples, accumulator and hydraulic attenuator are normally used. In this study, parallel pipeline with a bent-axis piston pump is introduced to a hydraulic pipe system as a method for reducing the pressure ripples and using the transfer matrix method, the dynamic characteristics of the pipe system are analysed and compared with experimental results. The results show that the phase interference using parallel pipeline with a bent-axis piston pump is effective to reduce the pressure ripples in the hydraulic pipelines.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump (원심형 혈액펌프의 최적화 수력설계 및 성능해석)

  • Park Moo Ryong;Yoo Seong Yeon;Oh Hyoung Woo;Yoon Eui Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.87-94
    • /
    • 2006
  • This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.

Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump (유압펌프용 실린더 블록의 윤활 및 동특성 해석)

  • 안성용;임윤철;홍예선
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.209-217
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

REDUCTION OF PRESSURE RIPPLES USING A PARALLEL LINE IN HYDRAULIC PIPELINE

  • KIM K. H.;JANG J. S.;JUNG D. S.;KIM H. E.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • Pressure ripples, which are inevitably generated by a fluctuation of flow rate caused by a pump mechanism, include noises and vibrations in hydraulic pipeline. These noises and vibration deteriorate the stability and accuracy of hydraulic systems. The accumulator and hydraulic attenuator are normally used to reduce the pressure ripples. In this study, a parallel line is introduced to the hydraulic pipeline for the hydraulic system with a bent-axis piston pump as a method to reduce the pressure ripples. The dynamic characteristics of the hydraulic pipeline with a parallel line are analyzed by a transfer matrix in the frequency domain. The usefulness of the hydraulic pipeline with a parallel line was ascertained by experiment and simulation. The results from the experiment and simulation show that the hydraulic pipeline with a parallel line were effective in reducing the pressure ripples.