• Title/Summary/Keyword: hydraulic pressure tunnel

Search Result 80, Processing Time 0.022 seconds

Design Consideration for Tunnel Spillway related to Hydraulic Characteristics (수리특성을 고려한 수로터널 설계)

  • Yoon, Dong-Duk;Kim, Tae-Hyok;Lee, Jung-Woo;Oh, Myung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.161-168
    • /
    • 2006
  • The recent unpredictable weather condition, especially abnormal heavy precipitation which is on the verge of PMF, made implement more rigorous design standard. Following these trends, the idea of additional auxiliary spillway, most of them are tunnel around existing one, is adopted to many sites. Tunnel spillway, having free water table is generally consisted of several compartments such as inlet, transition, inclined, curved and stilling parts. It may has some technical problems to be considered. Among them, the surface deterioration due to cavitation is reported many times in the part of irregularities on lining. Including this kind of problem, several technical considerations for tunnel spillway will be handled in this paper during design procedure.

  • PDF

An experimental study on the effect of deterioration of drainage system on tunnel structures (배수시스템 수리기능저하가 터널구조물에 미치는 영향에 대한 실험적 연구)

  • Kwon, Oh-Yeob;Shin, Jong-Ho;Yang, Yu-Hong;Joo, Eun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.970-979
    • /
    • 2006
  • Construction of underground structure requires higher standard of planning and design specifications than in surface construction. However, high construction cost and difficult working environment limit design level and construction quality. One of the most sensitive factors to be considered are infiltration and external pore-water pressures. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. In this paper, the development of pore-water pressure and its potential effect on the linings are investigated using physical model tests. A simple physical equipment model with well-defined hydraulic boundary conditions was devised. The deterioration procedure was simulated by controlling both the permeability of filters and flowrate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanim of pore-water pressure development on the tunnel lining which is the effect of deterioration of drainage system. The laboratory tests were simulated using coupled numerical method, and shown that the deterioration mechanism can be reproduced using coupled numerical modelling method.

  • PDF

Influence of Pore Pressure Behind a Subsea Tunnel on Its Stability (터널 배면의 간극수압이 해저터널의 안정성에 미치는 영향)

  • You, Kwang-Ho;Lee, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.355-363
    • /
    • 2006
  • In this study, it was analyzed how the pore pressure behind a subsea tunnel influences on the stability of the tunnel. The tunnel is located in the soft rock layer, and a soft sandy layer and weathered soil layer are located on the top of it. Coupled numerical analyses are performed for both drained and undrained condition with varying coefficients of lateral earth pressure. In the case of undrained conditions, the stability of the tunnel was analyzed with different thicknesses of shotcrete. On the other hand, a sensitivity analysis was performed with different hydraulic conductivities and porosities of the shotcrete for the drained conditions. The stability of a subsea tunnel was evaluated in terms of safety factor suggested by You et al.(2000, 2001, 2005) based on the shear strength reduction technique. In this paper, the safety factor of a tunnel was calculated under steady state flow condition during hydro-mechanical coupled analysis. As a result, it was found that the stability of a subsea tunnel could be rather increased by allowing a proper amount of groundwater inflow into a subsea tunnel.

A Tunnel Mock-up Test and Numerical Analysis on Steel Fiber Reinforced Shotcrete (강섬유 보강 숏크리트의 터널모형실험 및 수치해석적 검증)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.107-117
    • /
    • 2008
  • In this study, the failure and deformation characteristics of steel fiber reinforced shotcrete (SFRS) which is a primary tunnel support was investigated to find out ground-support mutual behavior. To this end, a mock-up of a tunnel was made and experimented with the conditions of lateral earth pressure coefficient 0.5 and 1.0. During the tests, 11 hydraulic cylinders were used for loading. for better simulation of the lateral earth pressure effect, these cylinders were controlled separately by two groups; crown and side wall. Meanwhile, the deformation of shotcrete was measured by 11 LVDTs. Backfill material was also used fur better load transfer from hydraulic cylinders to shotcrete. For the validation of the mock-up test results, 3D numerical analysis is carried out. To do numerical analysis under the same condition as a mock-up test, the load history curve which was obtained during the test was tried to be simulated using an individual FISH routine in the numerical analysis.

A Study on the Variation of the Surface and Groundwater Flow System related to the Tunnel Excavation in DONGHAE Mine Area(l)-Concern on Hydrological and Rock Hydraulic Approach (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구(l)-수문학 및 암반수리학적 접근을 중심으로)

  • 이희근;전효택;이종운;이대혁;류동우;오석영
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.347-362
    • /
    • 1995
  • The purpose of this study was that manage effectively the excavation process of the transport tunnel in DONGHAE mine area by investigating the variationof the surface and groundwater flow system around the tunnel and neighbouring villages. Thus, the effect of excavation and water-prrofing process on the water system has been studied through the naked eye survey of the tunnel and the surface outcrop, joint survey, core drilling, the measurement of the surface water quantity, evapotranspiration and precipitation analysis, rock hydraulics approach, the pressure test of boreholes, the variation of the water level, and finally the numerical analysis. From above approachs, we derived the conclusion that the exhaustion of the surface water was not caused by the tunnel excavation on the groundwater system was minimized by effective water proofing process.

  • PDF

Developement and application of Statistical Hydrofracturing Data Processing Program (통계적 접근법에 의한 수압파쇄 자료해석용 전산 프로그램 개발 및 적용)

  • 류동우;최성웅;이희근
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.209-222
    • /
    • 1996
  • Shut-in pressure, reopenting pressure and fracture orientation are very important parameters to be evaluated precisely in in-situ stress measurement by hydraulic fracturing. Graphical methods on pressure-time curves have been conventionally used, even though these are seriously dependent on subjectivity of interpreters. So there have been many demands on new method to objectivity in determining parameters. We have developed integrated hydrofracturing data processing program (HYDFRAC), based on nonlinear regression analysis and can be invoked under the Window graphical user interface. HYDFRAC consiste of three routines, that is shut-in pressure routine, reopening pressure routine, and fracture delineation routine. Each of routines include independent modules according to parameter determination methods. Its application to field tests ensured both objectivity and facility in determining of hydraulic fracturing parameters. Determining shut-in pressures at each pressurization cycles, we adopted the exponential pressure-decay method(EPD method), the bilinear pressure-decay-rate method (PDR method), and the tangent intersection method in order to find the pressurization-cyclic tendency of shut-in pressures. The estimated pressure by PDR method exists in the range of the upper and lower values by EPD method, and lies near to the upper value more than the lower. Being the pressurization cycle increased, the range of upper and lower limits come to be stabilized gradually. By graphical superposition method and bilinear pressure-accumulated volume method, reopening pressures were determined. Vertical and inclined fracture attitudes were determined by applying the directional statistics and sinusoidal curve fitting, respectively. The results of evaluation of hydrofracturing parameters showed that statistical methods could enhance the objectivity better than graphical methods.

  • PDF

A Case Study for Evaluating Groundwater Condition in RMR and Q Rock Mass Classification on Bard Rock Tunnel (RMR 및 Q 분류시 지하수 조건 평가방법에 관한 사례 연구)

  • 이대혁;이철욱;김호영
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.353-361
    • /
    • 2003
  • For RMR and Q rock mass classification at the design and construction stage, evaluation of groundwater condition is usually based upon the experience due to the restriction of available methods. Based on the results of Taejon LNG Pilot Cavern which acquire joint water pressure, inflow rate of ground water and hydraulic conductivity model, estimates from numerical analysis and analytical solutions were compared to verify each evaluation method. As the result, the Raymer(2001) approach was found to be efficient for estimating inflow rate and corresponding value.

A Study on the Stability of Shield TBM Thrust Jack in the Behavior of Operating Fluid According to Thrust Force (추력에 따른 동작 유체의 거동에 있어 쉴드 TBM 추진잭의 안정성에 대한 연구)

  • Lee, Hyun-seok;Na, Yeong-min;Jang, Hyun-su;Suk, Ik-hyun;Kang, Sin-hyun;Kim, Hun-tae;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, the stability of the tunnel boring machine (TBM), used in tunnel excavation, according to the thrust force of the thrust jack was investigated. The existing hydraulic cylinder analysis method is fluid-structure interaction (FSI) analysis, where all of the flow setting and dynamic characteristics should be considered. Therefore, there is a need for a method to solve this problem simply and quickly. To facilitate this, the theoretical pressure in the hydraulic cylinder was calculated and compared with the analytical and experimental results. In the case of the analysis, the pressure generated inside the cylinder was analyzed statically, considering the operating characteristics of the shield TBM, and the stress and pressure were calculated. This method simplifies the analysis environment and shortens the analysis time compared to the existing analysis method. The obtained theoretical and analytical data were compared with the measured data during actual tunneling, and the analysis and experimental data showed a relative error of approximately 23.89%.

Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data (천공데이터를 이용한 터널 굴진면 전방 암반강도 예측)

  • Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.479-489
    • /
    • 2009
  • Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.