• 제목/요약/키워드: hydraulic pressure

검색결과 1,898건 처리시간 0.029초

유압실린더의 쿠션링 형상에 따른 쿠션 특성 연구 (Study of The Cushion Characteristics in accordance with Shapes of Cushion Ring of Hydraulic Cylinder)

  • 이용범;고재명;박종호
    • 유공압시스템학회논문집
    • /
    • 제5권2호
    • /
    • pp.14-19
    • /
    • 2008
  • Hydraulic excavator consists of booms, arms, bucket, and cylinder. The cylinder make these structures moved and the cushion parts of cylinder in operation absorb the great impact which is stemmed from high velocity and pressure at cushion parts of cylinders. The cushion technology of cylinders has a great effect on the operator's comfortable as well as protecting equipment from damage by suppressing the inertia of the hydraulic excavator. In this study, three hydraulic cylinders have different shapes of a cushion ring, respectively. we studied optimal cushion pattern by analyzing the change of cushion pressure and time, according to supply pressure and velocity variations.

  • PDF

Cartridge Valve를 이용한 유압시스템 개발에 관한 연구 (A Study on Development of Hydraulic Pressure System Using Cartridge Valve)

  • 이우;정석윤;김상구;김경훈;변승남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1279-1282
    • /
    • 2003
  • The hydraulic pressure system can deliver strong power and control is easy so that it have been applied to the element technique of an each industrial field. Apply range is the actual circumstances to be more widening according to the automation plant and trend of the manufacture facilities. The hydraulic pressure system have been used since early times and it was universalized considerable in the industrialized country. Utilized to an automation device instrument wide at an each industrial spot and contributed the air space development which contribution make great strides for robotics and airospace departments. Our circuit design technology for the device structure are weak and in fact domestic is depending on the income though importance of the hydraulic pressure system.

  • PDF

컨볼루션을 이용한 전자 유압 시스템의 피크압력 저감 제어 연구 (A Study of Peak Pressure Reduction Control of Electro Hydraulic System using Convolution)

  • 김경수;정진범;유범상
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.59-66
    • /
    • 2019
  • Hydraulic systems are essential for most of the construction equipments due to their various advantages, such as very powerful, quick response speed, precision control and remote control. Moreover, they are necessary to apply the electro hydraulic systems for precise and remote controls. Operating the small electronic joystick of the remote controller for the control of a multipurpose work machine with remote control technology increases the possibility of a sudden operation compared to the use of a conventional hydraulic joystick. When a joystick is suddenly operated, the peak pressure is generated in the system due to the quick response of the system. Then a vibration is generated due to the peak pressure, which causes instability to the operation of the construction equipment. Therefore, in this study, we confirmed the level of reduction of peak pressure occurring in the electro hydraulic system by using AMESim, when the output signal of the step shape generated by the sudden operation of the electronic joystick was changed by using the convolution operation.

프리필용 체크밸브의 유압진동 특성에 관한 연구 (A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve)

  • 박정우;한성민;이후승;윤소남
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

유압 피스톤 펌프의 피스톤과 실린더 사이에서의 압력측정 (Measurement of Oil Pressure Distribution between the Piston and Cylinder in Hydraulic Piston Pump)

  • 김영환;박태조
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.237-242
    • /
    • 2000
  • In this paper, an experiment was carried out to measure the hydrodynamic oil pressure distribution in the clearance gap between a piston and cylinder. The results showed that the pressure distributions are highly affected by the eccentricity of the piston. Therefore present experimental method can be used to enhance the performance of hydraulic piston pumps. Further experimental studies for various operating conditions and improvement in data acquisition methods are required to obtain more accurate results.

  • PDF

피스톤과 실린더 사이에서의 압력분포-실험(1) (Hydrodynamic pressure distribution between a piston and cylinder - Experiment (1))

  • 김영환;박태조
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.304-309
    • /
    • 2001
  • In this paper, the hydraulic oil pressure distributions are measured in the clearance gap between a stationary piston and moving cylinder apparatus. The results showed that the hydrodynamic pressure distributions are highly affected by the speed of cylinder and further experimental and analytical studies are required to obtain more accurate results. Therefore present experimental method can be used to enhance the performance of various hydraulic components adopting the piston-cylinder mechanism.

  • PDF

헬름홀츠 감쇠기를 응용한 유압시스템의 유압맥동 및 소음 최소화 연구 (Hydraulic Pulsation and Noise Reduction using the Helmholtz Attenuator)

  • 김동현;이대옥;최근국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.614-619
    • /
    • 1997
  • The hydraulic pressure pulsation has on the effected on the acoustic nosie and control performance of the hydraulic-servo system. The Helmholtz attenuator introduction on the hydraulic line is an efficient device to reduce the hydraulic pulsation. The salient feature of causing hydraulic pulsation and the frequency characteristics of Helmholtz attenuator are studied. The hydraulic filter design parameters such as the locating position, connecting orifice area and accumulator volume are mathematically analyzed. The instrumental works are carried out with the remarkable reduction of the hydraulic pressure pulsation magnitude and the acoustic noise level.

  • PDF

전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어 (Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

축압기를 갖는 유압관로의 동특성에 관한 연구 (Dynamic Response of Hydraulic Transmission Lines with an Accumulator)

  • 이일영;홍봉기
    • 수산해양기술연구
    • /
    • 제17권1호
    • /
    • pp.29-34
    • /
    • 1981
  • More recently, unsteady flow in small-diameter pipes plays a major role in liquid propellantrocket systems, hydraulic and pneumatic control system, and elsewhere. And it has shown that line dynamics can have a marked effect on the hydraulic system characteristics. In this paper, transfer function of hydraulic lines with an accumulator and an outlet orifice is' developed and compared with experimental data from frequency response tests at various airvolume(V.) and the location of accumulator(ld1t), so that their performance may be correctly and easily predicted and the design of the systems incorporating them improved. The obtained results are as follows: 1. The dynamic response of hydraulic lines may be analyzed more accurately by use of the viscous term(22) in unsteady laminar flow. 2. There was good agreement between the theoretical and experimental results of this investigation, and hydraulic systems with liines included an accumulator can be analyzed more accurately by use of the pressure transfer function given by eq. (16). 3. For the mitigation of surge in hydraulic lines, it is more effective that the location ofaccumulator is close to the pipe outlet side. 4. According to the gas volume of accumulator is increased(the sealing pressure is close tomean line pressure), the damping effect of pressure wave is improved.

  • PDF

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • 제40권2호
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.