• Title/Summary/Keyword: hydraulic performance

Search Result 1,638, Processing Time 0.028 seconds

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

Performance Evaluation for Hydraulic Type Energy Regenerative System (유압식 에너지 회생시스템의 성능평가)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2006
  • Vehicles usually have 3 types of speed pattern like acceleration, travel, and deceleration. It requires much driving energy from engine while accelerating, preserves much kinetic energy by inertia moment at travel speed, and releases the kinetic energy to the air while decelerating by the break system. If we accumulate the kinetic energy while decelerating and reuse the energy at the accelerating stage, then it can elevate the fuel efficiency, reduce the emission and improve the motive power. This paper proposes a hydraulic type energy regenerative system which converts the kinetic energy into hydraulic energy at the stage of deceleration and reuses it at the starting and accelerating stage of vehicles. The test equipment which has the field condition of city bus was prepared to evaluate the performance for energy regeneration. The test results show that both energy regeneration efficiency and fuel efficiency are improved significantly and the emission is reduced notably.

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve (프리필용 체크밸브의 유압진동 특성에 관한 연구)

  • Park, Jeong Woo;Han, Sung-Min;Lee, Hu Seung;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

Design and Implementation of 3DoF Manipulator with Cable-Hydraulic Driven Actuation for Cooperative Robot with High Output and Low Inertia (고출력 및 경량 협동로봇 위한 케이블-유압 구동 3자유도 매니퓰레이터 설계 및 구현)

  • Kim, Jungyeong;Kim, Jin Tak;Park, Sangshin;Han, Sangchul;Kim, Jinhyeon;Cho, Jungsan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.179-185
    • /
    • 2019
  • This paper presents cable-hydraulic driven 3DoF (Degree-of-Freedom) manipulator for cooperative robot with high output/low inertia and enhancing lager workspace of hydraulic manipulator. Hydraulic actuation could be solution to design more higher output manipulator than the one of electric motor actuation due to install actuation source and robot joint separated. In spite of this advantage, the conventional hydraulic driven manipulator using cylinder or vane actuator is not suitable for the candidate of cooperative robot because smaller workspace owing to small RoM (Range of Motion) hydraulic actuator. In this paper, we propose 3DoF manipulator with cable-hydraulic actuation which is more larger ratio of payload-to-weight than the one of conventional cooperative manipulator and larger workspace than the one of existing hydraulic driven manipulator. The performance of proposed manipulator was demonstrated by the experiments for confirming overall workspace task, high payload operation task under worst situation and comparing repeatability between developed manipulator and existed cooperative robots. The results of experiments showed that the appropriate performance of proposed manipulator for cooperative robot.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

A Study on the Characteristic Analysis of the Load-sensitive Hydraulic Pump Control System (부하 감응형 유압 펌프 제어 시스템의 특성 해석에 관한 연구)

  • 이용주;이승현;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.148-154
    • /
    • 2000
  • In this study, the static and the dynamic characteristics of the load-sensitive hydraulic pump control systems of a hydraulic excavator were analyzed using the developed analysis tool. The results were compared with the experimental ones. To improve the static performance of the system, the system parameter effects on the controllable region and the pump pressure variation were studied. The parameters enhancing dynamic characteristics were also considered.

  • PDF

A study on the performance improvement of hydraulic position control system using series-feedback compensator (직렬 피이드백 보상기를 이용한 위치제어 유압시스템의 성능향상에 관한 연구)

  • 이교일;이종극
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.332-337
    • /
    • 1988
  • A digital series-feedback compensator algorithm for tracking time-varying signal is presented. The series-feedback compensator is composed of one closed loop pole / zero cancellation compensator and one desired-input generator. This algorithm is applied to nonlinear hydraulic position control system. The hydraulic servo system is modelled as a second order linear model and cancellation compensator is modelled from it. The desired input generator is inserted to reduce modelling error. Digital computer simulation output using this control method is present and the usefulness of this control algorithm for nonlinear hydraulic system is verified.

  • PDF

Optimal control of a hydraulic servosystem by an observer (관측기에 의한 유압 서어보 시스템의 최적제어)

  • 조승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.663-668
    • /
    • 1986
  • State variables of an observer were made use of to realize the optimal position control of a hydraulic servosystem with the inherent nonlinearities. The range of eigenvalues of an observer suitable for the hydraulic servosystem was investigated through computer simulation. The effect of direct state feedback of hydraulic servosystem was compared with that of estimated state feedback using observer to ascertain the possibility of performance increase using observer.

  • PDF

로그분포모형을 이용한 토양입도분포로부터의 불포화수리전도도 추정

  • 황상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.99-101
    • /
    • 2003
  • Unsaturated hydraulic conductivity models have been widely used for the numerical modeling of water flow and contaminant transport in soils. In this study, a simple hydraulic conductivity model is developed by using information of particle-size distribution from the lognormal distribution model and its results are compared with those from the Kosugi-Mualem (KM) model. The accuracy of the proposed model is verified for observed data chosen from the international UNSODA database. Results showed that the proposed model produces adequate predictions of hydraulic conductivities. Performance of this model is generally better than the KM function.

  • PDF