• Title/Summary/Keyword: hydraulic parameter

Search Result 429, Processing Time 0.026 seconds

Structure Parameter Change Estimation of a Forward Osmosis Membrane Under Pressurized Conditions in Pressure-assisted Forward Osmosis (PAFO) (가압형 정삼투 시 압력에 따른 정삼투막의 Structure Parameter 변화양상 예측)

  • Kook, Seungho;Kim, Sung-Jo;Lee, Jinwoo;Hwang, Moonhyun;Kim, In S.
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • Pressure-assisted forward osmosis (PAFO) process has recently been under spotlight for its potential to improve forward osmosis (FO) process performance by applying low hydraulic pressure on the feed side. Structure parameter, one of the governing factors in estimating water flux and solute flux across FO membranes in the solution-diffusion model (S-D model), determines solute resistivity in FO and PAFO processes. This study aims to estimate the trend of structure parameter change with respect to varying additional hydraulic pressure condition in PAFO.

Dynamic Model Parameter Estimation of Hydraulic Cylinder for Robot Manipulator Control (유압구동 로보트의 제어를 위한 유압 실린더 모델 파라미터 추정)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.113-121
    • /
    • 1996
  • In the early developmental stages of robotics,hydraulics played an important role. As the power-to-weight ratio of electric motors increased, they eventually replaced hydraulic actuators in robot manipulators. Recently, however, task requirements have dictated that the manipulator payload capacity increase to accomodate greater payload, greater length, greater reaction forces, and hydraulic actusators are being studied as an effective form of robot actuation again. For efficient control of hydraulic actuators, the knowledge of its dynamic equation is essential. However, the dynamic equation of hydraulic actuators are nonlinear, and the dynamic coefficients are time varying. In this paper, an estimation algorithm of the dynamic coefficients of the hydraulic piston dynamics are formulated. Simulation results are presented to show the possibility of the parameter estimation.

  • PDF

Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model (분포정수계 관로모델을 이용한 비정상 유량계측)

  • Kim, Do-Tae;Hong, Sung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

MODELING AND PARAMETER IDENTIFICATION FOR A PASSIVE HYDRAULIC MOUNT

  • Zhang, Y.X.;Zhang, J.W.;Shangguan, W.B.;Feng, Q.Sh.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 2007
  • A lumped parameter model is proposed for the analysis of dynamic behaviour of a Passive Hydraulic Engine Mount (PHEM), incorporating inertia track and throttle, which is characterized by effective and efficient vibration isolation behaviour in the range of both low and high frequencies. Most of the model parameters, including volume compliance of the throttle chamber, effective piston area, fluid inertia and resistance of inertia track and throttle are identified by an experimental approach. Numerical predictions are obtained through a finite element method for responses of dynamic stiffness of the rubber spring. The experiments are made for the purpose of PHEM validation. Comparison of numerical results with experimental observations has shown that the present PHEM achieves good performance for vibration isolation.

A Study on the Parameters Estimation of Electro-Hydraulic Servo Systems Using RMSM (RLSM 방법을 이용한 전기 유압 서보 시스템의 파라미터 추정에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1510-1514
    • /
    • 2011
  • In this paper, linear discrete model of the electro-hydraulic servo system are made for parameters estimation. The parameters of electro-hydraulic servo system are estimated using the recursive least square method. Persistent excitation conditions are studied in order to estimate parameters of electro-hydraulic servo system to real values and parameters estimation affections are studied due to the forgetting factors variation. As the results, An parameter estimation method has been synthesized for minimizing the error between reference and error.

Identification and Control of Electro-Hydraulic Servo System Using DDV

  • Kim, Seung-Hyun;Lee, Chang-Don;Lee, Jin-Kul;Lee, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.1-169
    • /
    • 2001
  • In general, for high performance pressure control system, hydraulic system with electo hydraulic servo valve controls flow rate, it contains many nonlinear term like square-root and change of bulk modulus by flow rate. But, DDV(Direct Drive Valve) contains pressure control loop itself, then it can eliminate nonlinearity and achieve linearity for hydraulic system. In this paper, parameter identification method which uses input and ouput data is applied to obtain DDV's mathematical model and parameter assuming that dynamic characteristic of DDV is first order system. Then, the state feedback controller was designed to implement the force control of hydraulic system , and the control performance was evaluated.

  • PDF

A study on the development of Electro-hydraulic servo Excavator(1) -Simulation of the trajectory tracking control using VSS- (전기-유압서보에 의한 자동유압굴삭기의 개발에 관한 연구(1) -가변구조에 의한 궤도추종제어 시뮬레이션-)

  • Heo, Jun-Yeong;Ha, Seok-Hong;Lee, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-76
    • /
    • 1989
  • The objective of this paper is to design the variable structure system(VSS) controller for the tracking control of excavator which is driven by electro-hydraulic servomechansim. It is generally agreed that the dynamic characteristics of the robot arm such as excavator are coupled, time varying, and highly nonlinear, and also hydraulic system contains nonlinear characteristics in itself, so performing exact position control and trajectory tracking control need remarkable consideration. To solve this porblem, this system was designed as a variable structure system. The salient feature of VSS is that the sliding mode occur on a switching surface. While in sliding mode, the system remains insensitive to parameter variations and disturbances. This control algorithm was applied to a hydraulic excavator by simulaltion and to a simulator by experiment. And its effectiveness was verified. And the results of VSS for the electro-hydraulic excavator was compared with that of the PID when load disturbances and system parameter variations exist.

  • PDF

A Study on the Characteristics of the Compact Hydraulic Servo Mechanism for Proportional Position Control (비례 위치 제어용 소형 유압 서보 기구의 특성에 관한 연구)

  • Lee, Seung-Hyun;Song, Chang-Seop
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.49-54
    • /
    • 2002
  • In this study, the characteristics of the hydraulic servo mechanism for proportional position control of a hydraulic construction eguipment were analyzed using the developed analysis tool. The result were used in the others hydraulic system except construcdtion eguipment to improve the static performance of the system, the system parameter effects on the controllable region and the hydraulic servo mechanism variation were studied.

Sound Quality Analysis of Water Turbing Generator Noise using Zwicker Parameter (Zwicker 파라미터를 이용한 수차발전기 소음의 음질분석)

  • Kook, Joung-Hun;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.273-277
    • /
    • 2007
  • In case of the Hydraulic Turbine Dynamo operating for Waterpower Generation, it makes very huge and loud noises, and it influences bad effect physically as same as mentally to those people who are working inside of power plant, and brings the decline of an effective working efficiency. However, its evaluation method or measure about such noise reflects merely its physical attribute which is sensuous Loudness of the Noise itself, since the accumulation effect of Noise or the meaning connected with psychological response did not reflect, it is the actual state that a rational evaluation is unable to expect. Consequently, this Study has attempted to evaluate the Noise of Hydraulic Turbine Dynamo by analyzing the sound quality using Zwicker‘s Psychological Acoustic Parameter, after classification by its positions of the Noise occurring at Hydraulic Turbine Dynamo.

  • PDF

Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis

  • Yoon, Seok;Lee, Seung-Rae;Kim, Yun-Tae;Go, Gyu-Hyun
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2015
  • Saturated soil hydraulic conductivity is a very important soil parameter in numerous practical engineering applications, especially rainfall infiltration and slope stability problems. This parameter is difficult to measure since it is very highly sensitive to various soil conditions. There have been many analytical and empirical formulas to predict saturated soil hydraulic conductivity based on experimental data. However, there have been few studies to investigate in-situ hydraulic conductivity of weathered granite soils, which constitute the majority of soil slopes in Korea. This paper introduces an estimation method to derive saturated hydraulic conductivity of Korean weathered granite soils using in-situ experimental data which were obtained from a variety of slope areas of South Korea. A robust regression analysis was performed using different physical soil properties and an empirical solution with an $R^2$ value of 0.9193 was suggested. Besides that this research validated the proposed model by conducting in-situ saturated soil hydraulic conductivity tests in two slope areas.