Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.187

Structure Parameter Change Estimation of a Forward Osmosis Membrane Under Pressurized Conditions in Pressure-assisted Forward Osmosis (PAFO)  

Kook, Seungho (Gwangju Institute of Science and Technology)
Kim, Sung-Jo (Gwangju Institute of Science and Technology)
Lee, Jinwoo (Gwangju Institute of Science and Technology)
Hwang, Moonhyun (School of Environmental Science and Engineering, Global Desalination Research Center)
Kim, In S. (School of Environmental Science and Engineering, Global Desalination Research Center)
Publication Information
Membrane Journal / v.26, no.3, 2016 , pp. 187-196 More about this Journal
Abstract
Pressure-assisted forward osmosis (PAFO) process has recently been under spotlight for its potential to improve forward osmosis (FO) process performance by applying low hydraulic pressure on the feed side. Structure parameter, one of the governing factors in estimating water flux and solute flux across FO membranes in the solution-diffusion model (S-D model), determines solute resistivity in FO and PAFO processes. This study aims to estimate the trend of structure parameter change with respect to varying additional hydraulic pressure condition in PAFO.
Keywords
PAFO; FO; structure parameter; hydraulic pressure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005).   DOI
2 S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges", J. Membr. Sci., 396, 1 (2012).   DOI
3 D. L. Shaffer, N. Y. Yip, J. Gilron, and M. Elimelech, "Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy", J. Membr. Sci., 415-416, 1 (2012).   DOI
4 D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015).   DOI
5 G. Blandin, A. R. D. Verliefde, Cy. Y. Tang, A. M. Childress, and P. Le-Clech, "Validation of assisted osmosis (AFO) process: Impact of hydraulic pressure", J. Membr. Sci., 447, 1 (2013).   DOI
6 Y. Oh, S. Lee, M. Elimelech, S. Lee, and S. Hong, "Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis", J. Membr. Sci., 465, 159 (2014).   DOI
7 T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications and recent developments", J. Membr. Sci., 281, 70 (2006).   DOI
8 M. Ghanbari, D. Emadzadeh, W. J. Lau, H. Riazi, D. Almasi, and A. F. Ismail, "Minimizing structural parameter of thin filmcomposite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates", Desalination, 377, 152 (2016).   DOI
9 J. R. McCutcheon and M. Elimelech, "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membr. Sci., 284, 237 (2006).   DOI
10 C. Suh and S. Lee, "Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution", J. Membr. Sci., 427, 365 (2013).   DOI
11 T. P. N. Nguyen, B.-M. Jun, J. H. Lee, and Y.-N. Kwon, "Comparison of integrally asymmetric and thin film composite structures for a desirable fashion of forward osmosis membranes", J. Membr. Sci., 495, 457 (2015).   DOI
12 J. M. C. Puguan, H.-S. Kim, K.-J. Lee, and H. Kim, "Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer", Desalination, 336, 24 (2014).   DOI
13 J. G. Wijmans and R. W. Baker, "The solution-diffusion model: a review", J. Membr. Sci., 107, 1 (1995).   DOI
14 S. S. Manickam and J. R. McCutcheon, "Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models", J. Membr. Sci., 483, 70 (2015).   DOI
15 C. Y. Tang, Q. She, W. C. L. Lay, R. Wang, and A. G. Fane, "Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration", J. Membr. Sci., 354, 123 (2010).   DOI
16 A. D. Wilson and F. F. Stewart, "Deriving osmotic pressures of draw solutes used in osmotically driven membrane processes", J. Membr. Sci., 431, 205 (2013).   DOI
17 M. Park, J. J. Lee, S. Lee, and J. H. Kim, "Determination of a constant membrane structure parameter in forward osmosis processes", J. Membr. Sci., 375, 241 (2011).   DOI
18 J. Duan, E. Litwiller, and Ingo Pinnau, "Solution-diffusion with defects model for pressure-assisted forward osmosis", J. Membr. Sci., 470, 323 (2014).   DOI
19 S. Sahebi, S. Phuntsho, Y. C. Woo, M. J. Park, L. D. Tijing, S. Hong, and H. K. Shon, "Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane", Desalination, 389, 129 (2016).   DOI
20 N.-N. Bui, J. T. Arena, and J. R. McCutcheon, "Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter", J. Membr. Sci., 492, 289 (2015).   DOI
21 L. Huang and J. R. McCutcheon, "Impact of support layer pore size on performance of thin film composite membranes for forward osmosis", J. Membr. Sci., 483, 25 (2015).   DOI
22 M. Park and J. H. Kim, "Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index", J. Membr. Sci., 427, 10 (2013).   DOI