• Title/Summary/Keyword: hydraulic influence

Search Result 453, Processing Time 0.03 seconds

Strength Development of the Concrete Incorporating Blast Furnace Slag and Recycled Aggregate as Alkali Activator (고로슬래그 미분말과 알칼리 자극재로서 순환골재를 사용하는 콘크리트의 강도발현 특성)

  • Kim, Jun-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • The objective of this study is to evaluate the strength development of blast furnace slag concrete in response to the use of recycled aggregate as alkali activator. The influence of the amount of recycled aggregate was evaluated depending on different ratios of replacement for each RFA and RCA to NFA and NCA, respectively. The results indicated that as replacement of RFA and RCA increased, their strength exhibited to be increased. This was due to the fact that the latent hydraulic properties of blast furnace slag was activated by the alkali in recycled aggregates. However, in case of 365-days, it showed lower compressive strength than using NA(natural aggregates) which could be explained as the exhaustively use of alkali containing in RA. The specimens using RA showed about 90% of compressive strength comparing with specimens using NA.

An Introduction to the Ground Water Model Test (지하수 model에 관한 모형시험방법)

  • 김주욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1301-1305
    • /
    • 1967
  • Ground water flow can be studied with model test. Model test of ground water works are necessary for economic and safe design of the works. Also influence of the ground water flow to the durability and safety of hydraulic structures can be studied with this model. a. Sand model ; Water flow through porous media is the principle of sand model. Darcy's formula is the basic equation, $q=k{\frac{dh}{ds}}^{\circ}. The effect of the ground water flow on the grain system itself is represented with this model only. b. Hele-Shaw model ; In this model use is made of the viscous flow analogy. Viscous fluid such as glycerine flowing through two parallel plates depends on Poiseuille law, $q=-c{\frac{dh}{ds}}$. The analogue can be used vertically and horizontally. c. Heat model ; This is based on the analogy of the Fourier's law for heat conduction and Darcy's law for ground water flow. Especially unsteady problem can be studied with this model. A difficulty of the construction of this model is the isolation, which has to prevent losses of the heat. d. Electirc model ; Ohm's law for electric current is analogous to Darcy's law. Resistance material such as metal foil, graphite block, water with salt added, gelatine with salt added, ete. is connected to electric sources and resistor, and equi-voltage line is detected with galvanometer, $N_aCl$, $CuSo_4$, etc. are used as salt in the model. e. Membrane model ; This model is based on the facts that the deflection of a thin membrane obeys Laplace's equation if there is no load in the direction perpendicular to the membrane, and if the dellection is small.

  • PDF

An evaluation on power generation of water resources facilities in North Korea considering climate change (기후변화 영향을 고려한 유출변화에 따른 북한 수자원시설 발전량 평가)

  • Eo, Gyu;Lee, Chan Hee;Sim, Ou Bae;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.355-369
    • /
    • 2018
  • The runoff will be changed in the future due to climate change, and this phenomenon affects the flood inflow to Water Resources Facilities (WRF) and its production. This study has evaluated the electric power generation of WRF in North Korea as climate change. The WRF can produce the electric power by rotating the hydraulic turbine using the energy of water. In other words, it converts the potential energy to the kinetic energy, then the kinetic energy to the electric energy. As a result of this study, the amount of power generation of WRF in North Korea decreased from 2011 to 2040, and increased from 2041 to 2100, comparing with present. In other words, the productivity will decrease at first (2011~2040) but increase (2041~2100). It is because there will be new facilities for climate change, and the capacities of them will be getting far better than the existing facilities. The existing North Korean WRFs are vulnerable to the effects of climate change, and it is judged that the new North Korean WRFs are advantageously located in the influence of climate change.

A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems (개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Lee, Bo-Hyun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

Retreatment of Arificial Wastewater by using Microalgae (조류를 이용한 인공하수의 재처리)

  • Lee, Young-Joon;Lee, Soo-Hyung
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.133-140
    • /
    • 2002
  • This study was performed in lab scaled oxidation pond. The removal efficiency of pollutant on the influence of changes of hydraulic retention time and pond style was investigated. The correlation between organic removal efficiency and dissolved oxygen concentration on algal photosynthesis showed the light time revealed a higher relationship more than the dark time, and the squares of the correlation coefficient of 15 days retention time were higher than that of 5 days in single pond. The variation of dissolved oxygen concentration of a series pond was from 4.2 to 19.8 mg/l under 5 days retention time, the concentration of dissolved oxygen increased with increasing step of series pond. Between the single pond and a series of pond system, a series of pond system showed better organic removal efficiency. Average removal efficiency range of $TBOD_5$ and $SBOD_5$ was $49{\sim}83%$ and $87{\sim}92%$, respectively. Algae should be removed appropriately to increase the removal efficiency of organic matter.

Analysis of the Changes in Rainfall Quantile according to the Increase of Data Period (자료기간 증가에 따른 확률강우량의 거동특성 분석)

  • An, Jae-Hyeon;Kim, Tae-Ung;Yu, Cheol-Sang;Un, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.569-580
    • /
    • 2000
  • To account for the influence of heavy storm in Korea by climate change like global warming, the frequency analyses for annual maximum rainfall sequence in 12 rainfall gauge stations are carried out. In order to analyze the temporal change, the rainfall quantile of each station is estimated by the 30-yr data period being moved from 1954 to 1998 with 1-yr lag. Through the analysis for l00-yr rainfall quantile it has been shown that the recent heavy storms increase comparing with storms in the past. From the additional estimating of the rainfall quantile of each station by the 30-yr data period being cumulated from 1954 to 1998 with 1-yr, the change of the probable rainfall by including the heavy storm duration is realized. When the hydraulic structures are determined, it is important to select the data size and necessary to reestimate the flood prevention capacity in existing river systems.ystems.

  • PDF

Analysis of Water Depth and Velocity through Discharge Condition from Sewerage Outlet at Near Channel Junction (하천 합류부 주변내 하수관거 방류조건에 따른 수위 및 유속 영향분석)

  • Chung, Yeon-Jung;Choi, Gye-Woon;Kim, Young-Kyu;Cho, Sang-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.49-56
    • /
    • 2006
  • The rainfall runoff is drained through sewerage outlet at urban area. But, there is no guideline or standard to install sewerage outlet, so the sewerage outlet are designed or installed by discretion of engineers or constructors. In this paper, for the sake of supporting basic data to design, it would be suggested a guideline for less influenced to flow at the channel flow condition through hydraulic experiment by variation of lateral inflow discharge, sewerage outlet projecting part, sewerage outlet direction and position. Through 10 cases of experiments, it would be less influenced two sewerage outlet at up and down stream than one installed at up or down stream even though the same discharge. And installed conditions which are installed angle and protecting part will be influenced to increase water depth and to decrease velocity at upstream. So when sewerage outlet is installed, it would be try to find a installing way to be less influence with more careful.

The Hydraulic Characteristics of Liquid Shotcrete Accelerators within Cement System (시멘트 계에서 액상 숏크리트용 급결제의 수화 특성에 관한 연구)

  • Shin Jin-Yong;Kim Jae-Young;Hong Ji-Sook;Suh Jeong-Kwon;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1011-1018
    • /
    • 2005
  • The influence of liquid shotcrete accelerators(alkali aluminate, two types of alkali-free) was investigated. Comparing to the existing alkali aluminate accelerator, new alkali-free accelerator, AF2, shortened initial and final setting of cement system, and after curing for 1 day compressive strength was analogous with others. On the other hand, compressive strength of specimen cured for 12 hour was the highest by the addition of alkali aluminate accelerator, but final strength was the lowest by that. But compressive strengths of AF1, AF2 were similar to Plain up to 28day. Further from XRD(X-Ray Diffractometer) and DSC(Differential Scanning Calorimeter) analyses, we confirmed that setting promoted by alkali aluminate was mainly because of Ca(OH)2(calcium hydroxide), but the accelerating behavior of alkali-free was influenced by the needle-like ettringite$(6CaO{\cdot}Al_2O_3{\cdot}3SO_3{\cdot}32H_2O)$ crystal.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

Damage detection for beam structures using an angle-between-string-and-horizon flexibility matrix

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.643-667
    • /
    • 2010
  • The classical flexibility difference method detects damage by observing the difference of conventional deflection flexibility matrices between pre- and post-damaged states of a structure. This method is not able to identify multiple damage scenarios, and its criteria to identify damage depend upon the boundary conditions of structures. The key point behind the inability and dependence is revealed in this study. A more feasible flexibility for damage detection, the Angle-between-String-and-Horizon (ASH) flexibility, is proposed. The physical meaning of the new flexibility is given, and synthesis of the new flexibility matrix by modal frequencies and translational mode shapes is formulated. The damage indicators are extracted from the difference of ASH flexibility matrices between the pre- and post-damaged structures. One feature of the ASH flexibility is that the components in the ASH flexibility matrix are associated with elements instead of Nodes or DOFs. Therefore, the damage indicators based on the ASH flexibility are mapped to structural elements directly, and thus they can pinpoint the damaged elements, which is appealing to damage detection for complex structures. In addition, the change in the ASH flexibility caused by damage is not affected by boundary conditions, which simplifies the criteria to identify damage. Moreover, the proposed method can determine relatively the damage severity. Because the proposed damage indicator of an element mainly reflects the deflection change within the element itself, which significantly reduces the influence of the damage in one element on the damage indicators of other damaged elements, the proposed method can identify multiple damage locations. The viability of the proposed approach has been demonstrated by numerical examples and experimental tests on a cantilever beam and a simply supported beam.