• Title/Summary/Keyword: hydraulic impact pressure

Search Result 69, Processing Time 0.02 seconds

The effect of strain rate on the instability of sheet metal (변형율속도가 판재의 불안정에 미치는 영향)

  • 백남주;한규택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.935-943
    • /
    • 1988
  • The forming limit diagram is assessed as a means of estimating the forming characteristics of sheet metal and is usually determined experimentally. The strain rates used in the determination are likely to be low. However, often in practice, the strain rates are much higher, so if forming limit diagram is determined at low rates, it may not be appropriate. This paper reconsiders the forming limit diagram for mild steel and aluminum sheet up to variation in strain rate from 10$^{-2}$ sec to 20/sec where its forming has been carried out under oil pressure using a hydraulic bulge test with circular and elliptical dies. To obtain higher strain rate, an impact bulge test had been employed with the same die sets as those used for a hydraulic bulge test. The results obtained are as follows: (1) As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. (2) Experiment has shown that, in the positive quadrant of the forming limit diagram, the diagram is lowered with increasing strain rate and the effect of strain rate changes according to strain paths and materials..

Flow-induced Vibration Time Response Analysis of Loosely Supported Multi-Span Tube using Commercial FEA Code (지지점 간극을 갖는 다점지지 유연관의 유동하중에 의한 시간응답 이력해석과 상용유한요소 해석코드의 적용)

  • Lee, Kang Hee;Kang, Heung Seok;Shin, Chang Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • Time domain response analysis for vibro-impact nonlinear behavior of multi-span tube with loose supports was performed using commercial FEA code and user subroutine. Support geometry of multi-span tube with a finite gap is realistically modeled by analytical rigid surface. Model of hydrodynamic force is based on the Qusai-steady model which accounts for the inclined angle of relative flow velocity and time delay between flow force and resulting tube motion. During tube vibration from flow loading, impact and friction at the support location is simulated using commercial FEA code with master slave contact algorithm. Analysis results has reasonable agreement with those of references and test experience. Plan of further refinement of analysis model and future test verification is briefly introduced.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.

Minimization of Shifting Shock of Tractor PST using SimulationX (SimulationX를 이용한 트랙터 PST 변속 충격 최소화 연구)

  • Eom, Tae Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.36-42
    • /
    • 2018
  • Agricultural tractors require frequent shifting to improve operation efficiency, and PST (Powershift Transmission) is considered as a suitable transmission. However, due to the inherent characteristics of the PST, shocks arise during shifting, which imparts a negative effect on the operator. Therefore, in order to improve the transmission performance of the tractor PST, researches on various methods including the hydraulic system circuit, the engine input speed control, and the mechanical system of the transmission are steadily being conducted. In this study, in order to reduce the impact of PST on a shift based on SimulationX software, we analyzed the characteristics of the input signal of PCV (Pressure Control Valve) through sensitivity analysis and verified the simulation model through actual vehicle test. Optimization was performed for minimizing the shift shock for some of the parameters of the input signal at constant temperature and RPM conditions.

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

Study on Solid-liquid Mixture Flow in Inclined Annulus (경사 환형관내 고-액 혼합 유동특성에 관한 연구)

  • Kim, Young-Ju;Kim, Young-Hun;Woo, Nam-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.15-20
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop Weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditiAn experimental study was carried out to study the solid-liquid mixture upward hydraulic transport of solid particles in vertical and inclined annuli with a rotating inner cylinder. The lift forces acting on a fluidized particle play a central role in many important applications such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport, the cleaning of particles from surfaces, etc. In this study a clear acrylic pipe was used to observe the movement of solid particles. Annular velocities varied from 0.4 to 1.2 m/s. The effect of the annulus inclination and drill pipe rotation on the carrying capacity of a drilling fluid, particle rising velocity, and pressure drop in a slim hole annulus were measured for fully-developed flows of water and aqueous solutions of CMC (sodium carboxymethyl cellulose) and bentonite. The rotation of the inner cylinder was efficient at carrying particles to some degree. For a higher particle volume concentration, the hydraulic pressure loss of the mixture flow increased because of the friction between the wall and solids or between solids.

A Study on Hydraulic Transients of Letdown System of Nuclear Power Plant (원자력발전소 유출계통의 과도현상에 대한 연구)

  • Kim, Min;Chung, Chang-Kyu;Kim, Eun-Kee;Ro, Tae-Sun;Lee, Soung-No;Yoo, Seong-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.493-498
    • /
    • 2002
  • The letdown system of pressurized water reactor (PWR) nuclear fewer plants had experienced instabilities in letdown system due to unacceptable flow characteristics of control valves. The Korean Standard Nuclear Power Plants (KSNPs) have three flow paths in parallel for letdown new control. Each flow path consists of two offices and one isolation valve. This study evaluates the effect of orifice arrangement and valve stroke time of letdown isolation valve on the system transients because sudden flow changes due to valve actuation can generate high pressure peaks in letdown line. A pressure transient analysis has been preformed to evaluate the impact of dynamic transients. This analysis uses MMS which is a simulation code developed by EPRI based on the method of characteristics. The result shows that the pressure peak is reduced in the continuous arrangement but negligible. Additionally, it shows that the stroke time of linear type flog valve greater than 15 seconds can give more stable performance.

  • PDF

Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline System

  • Kim Sang-Hyun;Yoo Wan-Suk;Oh Kwang-Jung;Hwang In-Sung;Oh Jeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.426-434
    • /
    • 2006
  • The impact of leakage was incorporated into the transfer functions of the complex head and discharge. The impedance transfer functions for the various leaking pipeline systems were also derived. Hydraulic transients could be efficiently analyzed by the developed method. The simulation of normalized pressure variation using the method of characteristics and the impulse response method shows good agreement to the condition of turbulent flow. The leak calibration could be performed by incorporation of the impulse response method with Genetic Algorithm (GA) and Harmony Search (HS). The objective functions for the leakage detection can be made using the pressure-head response at the valve, or the pressure-head or the flow response at a certain point of the pipeline located upstream from the valve. The proposed method is not constrained by the Courant number to control the numerical dissipation of the method of characteristics. The limitations associated with the discreteness of the pipeline system in the inverse transient analysis can be neglected in the proposed method.

Life Prediction and Stress Evaluation of Hydraulic Winch Drum by Finite Element Analysis and Experiment (유한요소해석과 실험에 의한 유압 윈치 드럼의 응력 계산 및 수명 예측)

  • Lee, Gi-Chun;Park, Jane;Nam, Tae-Yeon;Choi, Jong-Sik;Park, Jong-Won;Lee, Yong-Bum;Je, Yeong-Gi;Lee, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.254-261
    • /
    • 2020
  • The structural safety of hydraulic winch drum and the gears are estimated by the Finite Element Analysis (FEA) and the winch operation experiment. The mesh convergence test is performed and the applied force is the pressure on the drum converted from the rope tension in working condition. The stress of the drum calculated from the strain values of the winch operation experiment shows the agreement with that from the FEA. Most stress values are under the yield strength except for the small hole made for the wire rope fixation. The life of bearings in the drum is calculated using the life prediction formula with the reaction forces from the operation load. One of the two ball bearings shows the short life for impact condition, yet the real prototype winch system shows more life than the numerical value.

Experimental Study for Downfall Pressure on the Floor behind Rubble-Mound Structure by Wave Overtopping: Non-Breaking Condition (월파에 의한 경사식구조물 배후면에 작용하는 낙하파압에 대한 실험적 연구: 비쇄파조건)

  • Lee, Jong-In;Moon, Gang Il;Kim, Young Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.27-36
    • /
    • 2022
  • The large uprush could be occurred when the waves hit the coastal structure and this uprush by wave could make the overtopping. The downfall of the wave overtopping water over the structure brought about the vertical impact loads. The vertical impact loads should be evaluated in order to design the pavement behind the crown wall however these loads were still unclear. In this study, the hydraulic model tests for the downfall impact loads by wave overtopping were performed and the various conditions were applied to the tests. The effect of the incident wave condition, the freeboard, the armour crest height and the height of the parapet were investigated. The test results showed that the parapet on the crown wall could reduce the wave overtopping however the inclusion of parapet could lead to the increased downfall wave pressures behind the crown wall. The empirical formulae were proposed for evaluating the maximum downfall pressures behind the crown wall of rubble mound structure.