• Title/Summary/Keyword: hydraulic hose

Search Result 37, Processing Time 0.032 seconds

A Study on Pressure Ripple of Axial Piston Pump using Branch Hose (분기관을 이용한 피스톤 펌프의 압력 맥동에 관한 연구)

  • Lee, Hong-Seon;Lim, Tae-Hyeong;Chun, Se-Young;Kwon, Soon-Kwang;Lee, Chang-Don;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.117-124
    • /
    • 2007
  • The pressure ripple in most hydraulic systems is the root cause of their noise and vibration. This paper reduced the pressure ripple using side branch hose for an axial piston pump applied to small excavator. First, in calculating open area, a new method using groove area of valve plate is proposed. Simulation model in AMESim environment is developed to verify proposed method, find effective length and diameter of branch hose. Finally, the comparisons with experiment results show that the proposed method is more effective than previous method in reducing the pressure ripple.

Analysis of Foot Pressure according to the Work Postures on Fire Fighters (소방대원들의 작업자세에 따른 족저압력 분석)

  • Son, Sung Min;Roh, Hyo Lyun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.88-94
    • /
    • 2013
  • The purpose of this study is to find out the difference of foot pressure according to the firefighter's work postures for providing the basic information to prevent Musculoskeletal disorders. This study was conducted by 9 male firefighters. Work postures were selected for rescuee handling, fire hose and hydraulic rescue equipment work postures. These were divided into 3 position, "High", "Middle" and the postures of taking out and letting down hydraulic rescue equipment were analyzed as starting point and end point respectively. Foot Pressure was used to analyze contact area, peak pressure, and maximum force in terms of work postures, and compared between fire hose and hydraulic rescue equipment work postures. The results of foot pressure are as follows. According to the results of rescuee handling work postures, one person handling posture showed wide contact area and foot pressure showed the highest at right foot. Accoridng to the (High), (Middle), (Low) postures of fire hose, the results didn't show the difference among the contact area, peak pressure and maximum force. As the results of hydraulic rescue equipment work postures, (Low) postures showed the highest in terms of the right foot of contact area, peak pressure and maximum force and (High) postures showed the highest in left foot. The increase of foot pressure lead to be inconvenience of low extremity and muscle fatigue for maintaining postural control cause pain. Thus, it is necessary to design insole-equipped working shoe for reduce the impulse and effect of foot during the rescuee handling work which standing out as foot pressure.

A study on the accelerated life test method of hose assemblies by applying Knockdown stress (녹다운 스트레스에 의한 유압호스 조립체의 가속수명시험에 대한 연구)

  • Ko, Jae-Myoung;Lee, Yong-Bum;Han, Sung-Geon;Yoo, Young-Chul;Kim, Hyoung-Eui
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.93-100
    • /
    • 2006
  • The failure of hydraulic hose assemblies is caused by the impulse pressure and repetitive motions of bending and stretching (flexing) used at high pressure pipe in the form of bursting Since it takes long time to observe the bursting for life analysis, we can reduce test time by the method of applying the Knockdown stress which is equivalent to 70% of initial bursting pressure on rubber hose assemblies with maintaining the failure mode equally In this study, after scale parameter, shape parameter, and acceleration factor by preforming the impulse pressure test until the hose bursts, and finally analyzed the accelerated life.

  • PDF

Life Prediction for High Pressure Hose of Power Steering System by Impulse Pressure Test (충격 압력을 받는 파워스티어링 시스템의 고압호스 수명 예측)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Park, Jong-Won;Lee, Jong-Hwang;Jeong, Won-Wook;Im, Young-Han;Hwang, Kwon-Tae;Lee, Young-Shin;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • The hydraulic hose can be divided with the low pressure, the medium pressure, and the high pressure hose according to the applied pressure. The power steering system in a passenger car can be divided with the high pressure and the low pressure hose. This study deals with the life prediction for high pressure hose to be given impulse pressure which was generated in turning the car. To adjust with external and internal condition, impulse pressure and oil temperature need to be controlled with impulse test system. The result, which is only controlled with the pressure and oil temperature, adapted Calibrated Accelerated Life Test(CALT) method to predict the life of the high pressure hose and analyzed the swagging part by finite element method during the impulse test.

자동차 파워스티어링용 유압호스의 맥동감쇠특성

  • 김도태;이종만;윤인균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.196-202
    • /
    • 1997
  • A reinforced hydraulic hoses,caiied a resonator hoses,with fixible metal tube are commonly used in automotive power steering hydraulic systems to attenuate and eliminate the objectionable fluid borne noise(pressure ripple) or vibration produced by a pump or steering gear. To achieve better nose attenuation in automotile vehicles, the investigations on propagation and attenuation characteristics of fluid borne pressure ripple in power steering hydraulic ciruit are required. So, this paper descibes a mathematical model of hydraulic hoses to support design the power steering hydraulic circuit and analyze the attenuation characteristics of flow and pressure ripples. The model is based on the transfer matrix approach. The experimental results show that the pulsation attenuation characteristics of hydraulic house is remarkably affected by the flexible metal tube inserted coaxially inside a hydraulic hose with a finite length as well as viscoelastic properties of house wall. It is also shown that the predicted results bymodel proposed here agree well with the measured results over a wide frequency range. These results will assist in the modeling and design of hydraulic hoses, and hear, should provide a means for designing a quieter automotive power steering hydraulic systems.

Development of Swine Liquid Manure Spread System for Greenhouse (비닐하우스용 돈분뇨 액비살포장치 개발)

  • Oh, I.H.;Kim, W.G.;Song, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • It is investigated the development of swine liquid manure spreading system for a polyethylene film (PE vinyl) based greenhouse used for planting vegetables. These types of vinylhouses are normally six to eight meters wide; the spread system must be contained and capable of operating within this area. The system we designed for use here consisted of the following parts: 1) a reel for loading the hose, 2) hydraulic motor and cylinder to generate hydraulic pressure, 3) discharge unit, and 4) a frame with a 3-point hiteh link to the tractor. With this system, there are two types of hoses that can be used, a flexible flat hose that can be mounted directly to a tractor or a solid firm round hose which usually separated from the tractor. In either case, the discharge unit remains on the tractor. It is found that by using our spread system overall efficiency was 5 times greater than spreading swine liquid manure manually.

A Study of Safety Acquirement for an Assessment of Ultra High Pressure System (초고압 시스템의 안전성 확보에 대한 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.7-14
    • /
    • 2010
  • Ultra high pressure system, which can be generally increased over 1,000bar, needs to have sealing mechanism to protect leakage and selection of the materials used in the intensifier. Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions. Components need to be tested under 1.5 to 3 times of rated pressure to check the tolerance even though rated pressure range of these components are not ultra high pressure. So, the ultra high pressure system needs to be equiped to test components. In this study, safety assessments of ultra high pressure system which are using failure analysis of components, changing the types of the control system, and finite element analysis with static condition, are investigated.

A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line (공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구)

  • Park, Jeongman;Park, Jongjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve (프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석)

  • Park, Jeong Woo;Khan, Haroon Ahmad;Jeong, Eun-A;Kwon, Sung-Ja;Yun, So-Nam;Lee, Hue-Sung
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

A Study on the Mathematical Interpretation o Hydraulic Behaviour in Packing Tower (충전탑에서 수력학적 거동의 수학적 해석 연구)

  • 김석택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • This study was carried out to interpret mathematically hydraulic behaviour in packing tower which packed 50 mm plastic Hiflow-ring with a dimension of 300 mm wide and 1,400 mm high. In view of energy saving, the recent packing. 50 mm plastic Higlow-ring was superior to conventional packings because of low pressure drop in high loads. As relative error between numerically predicted and experimentally obtained values was less then 6% in the loading and flooding point, it found that therir results appeared to be adequate. Comparison of hose two values in both dry and wet packing conditions. relative errors amount to 3.96 and 5.6%, respectively. In order to evaluate the operating characteristics of packing, the type, size, and material for packings must be estimated in various system and loads. This study is able to calculated pressure drop, hold-up, gas and liquid loads using mathematical interpretation. For these calculation, the specific constants of each packings must be calculated first all. The method of mathematical interpretation in this study turned out to be superior to the existing methods because of reduced errors at loading and flooding point.

  • PDF