• Title/Summary/Keyword: hydraulic filling

Search Result 52, Processing Time 0.023 seconds

An Experimental Study on Compressibility Effect in Sloshing Phenomenon (압축성이 슬로싱 현상에 미치는 영향에 관한 실험적 연구)

  • Park, Jun-Soo;Kim, Hyun-Yi;Lee, Ki-Hyun;Kwon, Sun-Hong;Jeon, Soo-Sung;Jung, Byoung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.12-18
    • /
    • 2009
  • The present study focused on the compressibility of partially filled fluids in a sloshing tank. Filling ratios ranging from 18% to 26% were used to find compressible impact on a vertical wall. The model test was for 1/25 scale of a 138 K LNGC cargo tank. To investigate the two dimensional phenomenon of sloshing, a longitudinal slice model was tested. A high speed camera was used to capture the flow field, as well as the air pocket deformation. The pressure time history synchronized with the video images revealed the entire compressible process. Three typical impact phenomena were observed: hydraulic jump, flip through, and plunging breaker. In particular, the pressure time history and flow pattern details for flip through and plunging breaker are presented.

A Numerical Study on the Correlation between Joint Roughness and Hydraulic Characteristics (절리면 거칠기와 수리특성의 상관성에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.176-186
    • /
    • 2014
  • Roughness, aperture and filling material of rock joint are widely considered to affect the hydraulic characteristics of joint. Among these factors, in this study, the joint roughness was examined with artificial joint profiles generated by Monte Carlo simulating on the original profiles suggested by Barton and Choubey(1977). Original profiles and revised profiles were combined to establish flow channel models, in which the hydraulic characteristics were analyzed numerically on the basis of minimum aperture changes and flow channel shapes. Maximum flow rate was identified at the growing point of flow area after passing through minimum aperture generated by the two profiles, and it was resulted that maximum flow rate is inversely proportional to minimum aperture. Maximum flow rate per unit area showed different values because flow channel shapes and minimum aperture locations are different in each model. In flow channel, mechanical aperture showed approximately 1.07 ~ 3.00 times larger than hydraulic aperture. In this study, mechanical and hydraulic aperture were concluded to be closely related to $A_i$ value, and their relations can be denoted by $e_m=0.519A^{0.7169_i}$ and $e_h=0.6182A^{0.239}_i$, respectively.

Hydraulic Conductivity and Microscopic Analysis of Fly Ash Liner (플라이애쉬 혼합차수재의 투수특성과 미세구조 분석)

  • Jeong, Mun-Gyeong;Seo, Gyeong-Won;Lee, Yong-Su
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.109-126
    • /
    • 1998
  • The use of fly ash as a contaminant barrier material was studied. Mixing ratio of fly ash to bentonite to meet the requirements for landfill liners was determined. The hydraulic behavior exhibited by the fly ash-bentonite liner and the effects of CaO were investigated through hydraulic conductivity tests under various conditions and microscopic analyses including XRD, SEM, helium porosimetry, and image analysis. The hydraulic conductivity of compacted fly ash decreased with the addition of bentonite, which was due mainly to the expanding of bentonite and partly to the filling of voids by chemical reaction products among constituents of the artificial liner. Because of insufficient CaO content, and rich in content but low-reactive $SiO_2$ contained in the fly ashes used, pozzolanic reaction and resulting effects in the artificial liner were not significant. The reactions among constituting materials and their resulting effects on hydraulic conductivity were controlled not by the apparent amounts of each constituent, but by reaction activities of the materials in the artificial liner.

  • PDF

Estimation of Water Leak Rate in the Underground Oil Storage Cavern (지하 원유 저장공동에서의 누수량 산정에 대한 연구)

  • Shim, Hyun-Jin;Park, Tae-Jun;Jeong, Woo-Cheol;Kim, Ho-Yeong;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.233-240
    • /
    • 2010
  • Double Plug is constructed for preventing mixing of two different oils between two compartments in the underground oil storage cavern. And the gas and oil tightness of double plug is tested from the measurement of water leakage from double plug after the completion of double plug water filling. If water leakage is underestimated, it can increase construction cost and if water leakage is overestimated, it can increase operating cost. Therefore, optimum water leakage should be estimated to cut down the cost. In this study, hydraulic stability analysis was conducted to consider permeable properties of rock mass around double plugs and a water leak rate from double plug was estimated from the hydraulic stability analysis and case study. Finally, the reliability of estimation of water leak rate was proven by comparing estimated water leak rate with measured data.

2-Dimensional Equilibrium Analysis and Stability Analysis of Geotextile Tube by Hydraulic Model Test (지오텍스타일 튜브의 2차원 평형해석 및 수리모형시험을 통한 안전성 분석)

  • 신은철;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.251-260
    • /
    • 2002
  • Geotextile tribes are made of sewn geotextile sheet and hydraulically or mechanically filled with dredged materials. They have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins, and jetty). Therefore, it is composed of geotextile and confined fill material. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed of geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper are presented the stability analysis method by empirical equation and 2-D equilibrium analysis for geotextile tube. Also, the hydraulic model tests were performed to verify the theoretical stability analysis with geotextile tube shape, filling ratio, significant wave height, and so on. The results of this study show that the stability of geotextile tube depends on the tube shape, contact area, projection area. The theoretical analysis and hydraulic model test show almost the same results.

Efficiency Verification of Small-Scale Sewage Treatment Plant Using Discussed Vinyl as Biofilm Media (폐비닐 재활용 여재를 이용한 소규모 오수종말처리장의 효율검증)

  • Rim, Jay-Myoung;Kim, Byoung-Ug;Koo, Bon-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.1-6
    • /
    • 1998
  • This study was conducted to use disused vinyl as biofilm for biological sewage treatment. Efficiency verification was performed on laboratory and on-site plant. In laboratory study, total biochemical oxygen demand(TBOD) removal rate was ranged 94.8~97 % in each hydraulic retention tim(HRT), 12, 16, 20, 24 hr, respectively. At that time, filling rate was 50 %. And effluent TBOD concentration was low ranged 3.64~6.28 mg/L. In on-site plant, TBOD removal rate was ranged 88.2~96.8 % and effluent TBOD concentration was 4.8~17.7mg/L. This concentration was lower than disign effluent concentration, 30mg/L. Total kjeldhal nitrogen(TKN) removal efficiency was ranged 56.8~90.9%. This was resulted higher than Lab. scale treatment efficiency.

  • PDF

Feasibility and Filtering Efficiency of Geotextile Tube Structure with Polymer Material (지오텍스타일 재질에 따른 필터성능 및 튜브구조물 적용성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kim, Sung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2005
  • In recent years, the geotextile tubes filled with dredged material have been used in dike and breakwater construction for a number of projects around the world, and their use in this field is growing very fast. One of the most attractive advantages of geotextile tube technology is can be use the in-situ filling materials by hydraulic pumping, it can be also established lower costs and fast construction than other technology. Geotextiles form one of the two largest groups of geosynthetics and it is commonly made by two major types of polymer material(Polypropylene, Polyester). The objective of this paper is to examine several issues associated with drainage function and feasibility of geotextile tube structure such as filtering efficiency, dewatering efficiency, and filling process with polymer materials. Based on the laboratory filtering test and in-situ tests, polypropylene goetextile is more effective for drainage function of geotextile tube technology.

  • PDF

Hydraulic Conductivity and Strength Characteristics of Self Recovering Sustainable Liner (SRSL) as a Landfill Final Cover (SRSL 매립지 최종 복토층의 투수 및 강도 특성)

  • Kwon, Oh-Jung;Lee, Ju-Hyung;Cho, Wan-Jei;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.5-15
    • /
    • 2011
  • Conventional designs of landfill covers use geosynthetics such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature or humidity in landfill sites cause the development of cracks or structural damage inside the final cover. This study examined the application of a Self Recovering Sustainable Liner (SRSL) as an alternative landfill final cover material. SRSL consists of double layers, which have chemicals, can generate precipitates filling the pores of the layers by chemical reaction. The interface material forms an impermeable layer and in case of internal cracks, the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing flexible wall permeameter tests to prove that the hydraulic conductivity is lower than the regulations and unconfined compression tests to judge whether the strength satisfies the restriction for the landfill final cover. Furthermore, the environmental impacts on the permeability and strength were evaluated. The experimental results show that the SRSL has lower hydraulic conductivity and higher strength than the regulations and is little influenced by climatic changes such as wet/dry or freeze/thaw process.

Considerations of Permeability of Converter Slag for Recycling (재활용을 위한 전로슬래그의 투수성 고찰 (I))

  • 이광찬;이문수
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.69-83
    • /
    • 1999
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. In the case of converter slag submerged with fresh water, the coefficients of permeability in A and B samples less than 10 mm grain sizes were measured as $6.52\times10^{-2}cm\; per\; sec\; and\; 5.99\times10^{-1}/cm$ per sec respectively, while they were $1.88\times10^{-2}/cm\; per\; sec,\; 3.86\times10^{-1}/cm$ per sec respectively under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 100 days under sea water condition, the coefficients of permeability of A and B samples decreased ten times than initial values. The reduction of permeability coefficient was considered to result from the filling of voids in high-calcium quicklime(CaO).

  • PDF

Installation Technology and Behavior of Silty Clay Filled Geotextile Tube (실트질 점토 채움 시 지오텍스타일 튜브의 거동 및 시공 방법에 관한 연구)

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(detached breakwater, groins and jetty). The geotextile tubes are made of sewn geosynthetics sheets. If the sandy soil is use to fill material, these inlets should be spaced closely to assure uniform filling of the tubes because sandy soil and geosynthetic is very pervious. However, the clayey soil or contaminated slurry is used, the inlets can be located relatively long distance. The fine clayey particles tend to rapidly blind the fabric slowing down water escape through the geotextile. This paper presents a field test result of a geotextile tube in the land reclamation project for the Songdo New City construction site. The dredged silty clay was dredged by the dredging ship and hydraulically pumped into the geotextile tube. The height of geotextile tube was measured at every filling stage and also measured width and diameter of geotextile tube with the elapsed time. Based on the test results, if the clayey filling material is used, the pumping step must be divided 3~4 stages for drainage and sediment. After complete drainage, the height of the geotextile tube reduces by approximately 50%.

  • PDF