• 제목/요약/키워드: hydraulic damper

검색결과 97건 처리시간 0.025초

MR 댐퍼의 제어 효과 향상을 위한 Cutout 피스톤 적용에 관한 연구 (A Study on the Application of the Cutout Piston for the Improvement of the MR Damper's Control Effect)

  • 김종혁;배재성;황재혁;홍예선
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.506-513
    • /
    • 2011
  • This paper is concerned with a study on the control effect of the MR damper using the cutout piston. The MR damper has passive damping force by the oil pressure and controllable damping force by the magnetic effect. As the velocity of the MR damper's piston increases the passive damping force increases and the ratio of the controllable damping force to the total damping force is decreased. Consequently, the control performance of the MR damper is reduced according to the increase of the velocity. In this paper, the cutout piston concept is applied to the MR damper to improve MR damper's control performance by reducing the passive damping effect. The MR damper with the cutout piston has been designed and manufactured and its hydraulic and electromagnetic analysis has been performed to predict its performance. The control performances of the MR damper with the cutout piston are verified through the comparison of experiment results and simulation results.

The study of frictional damper with various control algorithms

  • Mirtaheri, Masoud;Samani, Hamid Rahmani;Zandi, Amir Peyman
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.479-487
    • /
    • 2017
  • Frictional dampers are used in structural engineering as means of passive control. Meanwhile, frictional damper shave a disadvantage compared to viscous rivals since the slippage force must be exceeded to activate the device, and cannot be ideal full range of possible events. The concept of semi-active control is utilized to overcome this shortcoming. In this paper, a new semi-active frictional damper called Smart Adjustable Frictional (SAF) damper is introduced. SAF damper consists of hydraulic, electronic units and sensors which are all linked with an active control discipline. SAF acts as a smart damper which can adapt its slippage threshold during a dynamic excitation by measuring and controlling the structural response. The novelty of this damper is, while it controls the response of the structure in real time with acceptable time delay. The paper also reports on the results of a series of experiments which have been performed on SAF dampers to obtain their prescribed hysteretic behavior for various control algorithms. The results show that SAF can produce the desired slippage load of various algorithms in real time. Numerical models incorporating control simulations are also made to obtain the hysteretic response of the system which agrees closely with test results.

반능동 단속형 감쇠기를 이용한 현가장치 개선에 관한 연구 (A study on the improvement of a suspension system adopting a semiactive on-off damper)

  • 최성배;박윤식
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.959-967
    • /
    • 1988
  • 본 연구에서는 반능동형 감쇠기의 작동기준을 설정하고 그것의 타당성을 조사 하는 것이 주목적이어서 속도에 대한 고려는 제외하였다.이때 반능동형 감쇠계가 고정된 감쇠계수를 갖는 감쇠기로 구성된 계보다 얼마만큼 성능이 향상되며 능동형 감 쇠기(감쇠계수를 제한된 영역내에서 순간순간 조절하여 변화시킬 수 있는 감쇠기)를 갖는 계에 얼마만큼 접근하는가가 비교되어진다.

자기유변유체 댐퍼를 이용한 운전석의 진동감쇠에 대한 연구 (A Study on The Vibration Reduction of a Driver Seat Controlling an MR Fluid Damper)

  • 안병일;전도영
    • 제어로봇시스템학회논문지
    • /
    • 제8권10호
    • /
    • pp.861-866
    • /
    • 2002
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to fixed seats. The system is located between a seat cushion and the base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

승용차용 연속가변 ER댐퍼의 성능연구 (Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles)

  • 김기선;장유진;최승복;정재천;서문석;여문수
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

구조물 진동 저감을 위한 반능동 제어 (Semiactive Control for Structural Vibration Mitigation)

  • Changki Mo;Jaesoo Lee
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.96-103
    • /
    • 2001
  • 지금까지의 여러 연구들에서 유압식 반능동 시스템은 적절하게 동작을 한다면 전능동 유압식 댐퍼 만큼의 구조물 진동저감 능력이 있음을 끊임없이 보여주고 있다. 이 논문에서는 축소 구조물에 설치된 반능동 시스템의 진동저감 성능을 기술하고 있다. 본 논문에서 제안한 시스템의 에너지를 소산시키기 위해 리아푸노브방법을 적용한 바이스테이트 제어의 효과를 수치적 및 실험적으로 입증한 결과들을 먼저 제시한다. 또한 바이스테이트 제어 성능을 다른 두 제어기와 비교 평가하였다. 이 연구결과를 통해 반능동 시스템은 구조물 진동저감에 저렴하면서도 효과적임을 보여준다.

  • PDF

유압 브레이커 메인바디의 충격 및 소음 저감을 위한 완충 장치에 대한 연구 (Damping Device for Hydraulic Breaker: Impact and Noise Reduction)

  • 조병진;한훈희;구정서
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.113-122
    • /
    • 2018
  • A hydraulic breaker is an attachment of an excavator, and it crushes stones. Recently, research to reduce the impact and noise of breakers are ongoing. In this paper, a method to improve the upper, lower, and side dampers, which act as insulation for the attenuation of vibration during breaker operation, is studied through testing and simulation. To obtain the nonlinear material constants required for the simulation, the biaxial tensile test was performed with urethane, which is a material used for dampers. The existing parts and the improved parts were compared and evaluated using the LS-DYNA program. As a result, 50% of the equivalent stress was reduced in the bracket body of the hydraulic breaker, and the equivalent stress of the side damper was also decreased. We verified that the fatigue conditions were satisfied by performing a fatigue analysis.

유연 구조물의 진동제어를 위한 선형모터댐퍼 (Linear Motor Damper for Vibration Control of Flexible Structure)

  • 강호식;송오섭;김영찬;김두훈;심상덕
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.492-498
    • /
    • 2005
  • A linear motor damper based on the linear motor principle is developed to suppress structural vibration. This paper deals with the design, analysis, and manufacture of the linear motor damper. It is designed to be able to move the auxiliary mass of 1500kg, up to $\pm250mm$ stroke. The control algorithm was designed based on LQG control logic with acceleration feedback. Through performance tests, it was confirmed that the developed hybrid mass damper has reliable feasibility as a control device for structural control. In addition, the linear motor damper is more economical than both hydraulic and electric motor driving mass damper with respect to simple structure and low maintenance cost. A series of performance tests of the linear motor damper system were carried out on the full-scale steel frame structure in UNISON Corporation. Through the performance tests, it was confirmed that acceleration levels are reduced down 10dB for first mode of structure

MR 유체를 이용한 연속 감쇠력 가변형 댐퍼를 위한 감쇠유동의 현상학적 모델링과 성능평가 (Phenomenological Damping Flow Modeling and Performance Evaluation for a Continuous Damping Control Damper Using MR Fluid)

  • 박재우;정영대
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.73-82
    • /
    • 2008
  • Recently MR CDC damper has been applied to semi-active suspension control system gradually. Compared to former hydraulic CDC damper, it has rapid time response performance as well as simple internal structure and wide range of damping force. In order to develop control logic algorithm which enables to take maximum advantage of unique characteristics of MR CDC damper, it is inevitable to perform a thorough investigation into its nonlinear performance. In many previous researches, MR fluid model was either simply assumed as Bingham Plastic, or a phenomenological model based on experiment was established instead to predict damping performance of MR CDC damper. These experimental flow model which is not based on flow analysis but intentionally built to fit damping characteristics, may lead to totally different results in case of different configuration or structure of MR CDC damper. In this study, a generalized flow formula from mathematical flow model of MR fluid for annular orifice is derived to analyze and predict damping characteristics when current is excited at piston valve.