• Title/Summary/Keyword: hydraulic constant

Search Result 377, Processing Time 0.029 seconds

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF

Cavitation Surge in a Small Model Test Facility simulating a Hydraulic Power Plant

  • Yonezawa, Koichi;Konishi, Daisuke;Miyagawa, Kazuyoshi;Avellan, Francois;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2012
  • Model tests and CFD were carried out to find out the cause of cavitation surge in hydraulic power plants. In experiments the cavitation surge was observed at flow rate, both with and without a surge tank placed just upstream of the inlet volute. The surge frequency at smaller flow rate was much smaller than the swirl mode frequency caused by the whirl of vortex rope. An unsteady CFD was carried out with two boundary conditions: (1) the flow rate is fixed to be constant at the volute inlet, (2) the total pressure is kept constant at the volute inlet, corresponding to the experiments without/with the surge tank. The surge was observed with both boundary conditions at both higher and lower flow rates. Discussions as to the cause of the surge are made based on additional tests with an orifice at the diffuser exit, and with the diffuser replaced with a straight pipe.

Hydraulic Parameter Evaluation by Sensitivity Analysis of Constant and Variable Rate Pump Test in Leaky Fractal Aquifer (누수성 프락탈 대수층내의 일정 또는 다단계 양수시험의 민감성 분석에 의한 수리상수 결정)

  • 함세영
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.311-319
    • /
    • 1994
  • This paper presents a sensitivity analysis to obtain best fit of hydraulic parameters of leaky fractal aquifer. The sensitivity analysis uses the least squares method. The hydraulic parameters (generalized transmissivity and generalized storage coefficient) can be easily determined by the sensitivity analysis for various flow dimensions and different values of the leakage factor. Furthermore, the sensitivity analysis was applied to variable-rate pump tast at several abstraction wells, A computer program was developed to evaluate the hydraulic parameters by the sensitivity analysis.

  • PDF

Electronic-Hydraulic Hitch Control System for Agricultural Tractors (III) -Computer Simulation- (트랙터의 전자 유압식 히치 제어 시스템에 관한 연구 (III) -컴퓨터 시뮬레이션-)

  • Kim, K.Y.;Ryu, K.H.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.290-297
    • /
    • 1990
  • The purposes of this study were to perform theoretical analysis of an electronic-hydraulic hitch control system for position and draft control of tractor implements and to investigate the performance of the control system through computer simulation. Computer simulation models which could predict the responses of the system to the step and sinusoidal inputs in position and draft controls were developed using the simulation package "TUTSIM". The effects of control mode, hydraulic flow rate, deadband, and proportional constant on control performance of the system were investigated. The simulated results were compard with the experimental ones to verify the simulation models. The simulation models appeared to be a useful means for the analysis and the design of the electronic-hydraulic hitch control system.

  • PDF

A study on design and control of hydraulic pin-on-disc type tribotester (유압식 핀-온-디스크형 마멸시험기의 설계 및 제어에 관한 연구)

  • 박명식;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1436-1440
    • /
    • 1996
  • The wear mechanism of material is an important mechanic property to select a material's life and a optimum work condition. Although there are many researches about a wear mechanism of material, the pin-on-disc type tribotester is widely known to us. It is difficult to add a variable and heavy load in the existing pin-on-disc type tribotester to estimate this wear mechanism. And due to a rotation of a disc, it is impossible to add a constant force. But we can solve this problem by using a hydraulic servo system. Therefore, in order to investigate a wear mechanism of materials, it is necessary to design a hydraulic pin-on-disc type tribotester and construct a controller against a variable disturbance.

  • PDF

Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • Kim, Jong-Ho;Choi, Chi-Soo;Na, Kyoung-Hoan
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

Characteristics Analysis of SRM Drive System for Hydraulic Pump (유압펌프용 SRM 구동 시스템의 특성해석)

  • Lee, Ju-Hyun;Kim, Bong-Chul;Kim, Tae-Hyung;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper proposed a hydraulic pump system which uses a variable SR drive and constant capacity pump. The base and maximum speed, torque are determined from displacement capacity of the pump and maximum pressure. The drive system is set to have a minimum power consumption having hydraulic preset pressure, which is operated within a maximum capacity and maximum preset pressure. This is achieved by controlling motor speed and power with feedback signal of pressure of the hydraulic pump. A 2.2kw, 12/8-pole SR motor and DSP based digital controller are designed and prototype drive system is manufactured. The proposed variable speed SR drive system is simulated and tested with experimental set-up. The test results show that the system has some good features such as high efficiency and high response characteristics.

  • PDF

A Study on the Automatic Impact Force Control Mechanism Design for the Hydraulic (유압 브레이커의 자동타격력 제어기구 설계에 관한 연구)

  • Kang, Young Ky;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, the design of automatic impact force control mechanism of hydraulic breaker was studied. The control mechanism uses the change of piston upper chamber pressure, when the hydraulic breaker impacts various strength rock. The piston stroke is controlled by rock strength sensing valve, piston stroke switching valve, and piston control valve. It is imperative to denote the area of each valve section, the spring constant of the spring. It provides convenience to users by automatically adjusting the appropriate striking force, according to the strength of the rock. Additionally, by increasing work productivity, it can contribute to reducing greenhouse gas emissions due to fuel efficiency reduction.

Microcomputer-Based Constant Frequency Control of Generating System Driven by Hydraulic Power -Pump Displacement Control Type - (마이크로컴퓨터에 의한 유압구동식 발전장치의 정주파수 제어)

  • 정용길;이일영;김상봉;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1991
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of main engine and load variation of the generator, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study two types of controller design method-the reference following optimal control method and robust servo control method-are adopted to the controller design. In the experiment, static and dynamic characteristics of the shaft generator system according to the variation of input frequency setting, the speed variation of the pump and the load variation of the generator are investigated. From the considerations on the computer simulation results and experimental results, it is ascertained that the shaft generator system proposed in this study has good control performances.

  • PDF