• 제목/요약/키워드: hydraulic boundary conditions

검색결과 113건 처리시간 0.023초

라이닝-지반 수리상호작용이 해저터널에 미치는 영향 (Effect of hydraulic lining-ground interaction on subsea tunnels)

  • 신종호;박동인;주은정
    • 한국터널지하공간학회 논문집
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2008
  • 라이닝 작용수압과 유입량은 지하수 수위 아래 혹은 하 해저터널 설계시 중요하게 고려되어야할 수리요소이다. 이 요소들은 수심, 심도, 수리경계조건의 영향을 받는다. 본 논문에서는 각 설계요소가 라이닝하중과 유입량에 미치는 영향을 수치해석적 도구를 이용하여 살펴보았다. 수심영향해석은 심도 30 m에 건설된 마제형 터널에 대하여 수심과 라이닝/지반 상대투수계수 비를 다양하게 변화시켜 조사하였고, 심도영향 해석은 수심 60 m의 터널에 대하여 심도 및 라이닝/지반 상대투수계수 비를 변화시켜 해석하였다. 해석결과 수리경계조건과 상관없이 수심 및 심도가 증가함에 따라 지반하중이 증가하였다. 이는 배수터널은 침투력의 영향으로, 비배수 터널은 정수압의 영향으로 수두가 증가함에 따라 지반하중이 증가함을 보여준 것이다. 수심, 심도의 증가에 따라 유입량은 선형적으로 증가하였으며, 라이닝/지반 상대투수계수비와 유입량관계는 펼쳐진 S자 곡선(stretched S-curve)형태로 나타남을 확인하였다.

  • PDF

Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests

  • Liu, Donghai;Yang, Jiaqi
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.189-206
    • /
    • 2020
  • The accurate modeling of boundary conditions is important in simulations of the discrete element method (DEM) and can affect the numerical results significantly. In conventional triaxial compression (CTC) tests, the specimens are wrapped by flexible membranes allowing to deform freely. To accurately model the boundary conditions of CTC, new flexible boundary algorithms for 2D and 3D DEM simulations are proposed. The new algorithms are computationally efficient and easy to implement. Moreover, both horizontal and vertical component of confining pressure are considered in the 2D and 3D algorithms, which can ensure that the directions of confining pressure are always perpendicular to the specimen surfaces. Furthermore, the boundaries are continuous and closed in the new algorithms, which can prevent the escape of particles from the specimens. The effectiveness of the proposed algorithms is validated by biaxial and triaxial simulations of granular materials. The results show that the algorithms allow the boundaries to deform non-uniformly on the premise of maintaining high control accuracy of confining pressure. Meanwhile, the influences of different lateral boundary conditions on the numerical results are discussed. It is indicated that the flexible boundary is more appropriate for the models with large strain or significant localization than rigid boundary.

A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제21권5호
    • /
    • pp.471-487
    • /
    • 2020
  • In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, Galerkin's approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns proves to demonstrate the precision of the proposed theory.

Thermal-hydraulic 0D/3D coupling in OpenFOAM: Validation and application in nuclear installations

  • Santiago F. Corzo ;Dario M. Godino ;Alirio J. Sarache Pina;Norberto M. Nigro ;Damian E. Ramajo
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1911-1923
    • /
    • 2023
  • The nuclear safety assessment involving large transient simulations is forcing the community to develop methods for coupling thermal-hydraulics and neutronic codes and three-dimensional (3D) Computational Fluid Dynamics (CFD) codes. In this paper a set of dynamic boundary conditions are implemented in OpenFOAM in order to apply zero-dimensional (0D) approaches coupling with 3D thermal-hydraulic simulation in a single framework. This boundary conditions are applied to model pipelines, tanks, pumps, and heat exchangers. On a first stage, four tests are perform in order to assess the implementations. The results are compared with experimental data, full 3D CFD, and system code simulations, finding a general good agreement. The semi-implicit implementation nature of these boundary conditions has shown robustness and accuracy for large time steps. Finally, an application case, consisting of a simplified open pool with a cooling external circuit is solved to remark the capability of the tool to simulate thermal hydraulic systems commonly found in nuclear installations.

지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링 (Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow)

  • 심병완;송윤호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng;Du, Chengbin;Zhao, Wenhu;Zhang, Deheng
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.553-562
    • /
    • 2021
  • In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.

천층터널 주변의 흐름거동 및 수치 해석적 모델링기법 연구 (A study on the flow behavior around shallow tunnels and its numerical modelling)

  • 신종호;최민구;강소라;남택수
    • 한국터널지하공간학회 논문집
    • /
    • 제10권1호
    • /
    • pp.37-47
    • /
    • 2008
  • 터널 설계 및 시공시 지하수 영향에 대한 정확한 이해가 필요하며, 이를 위해 터널 주변의 흐름거동을 파악하는 것이 중요하다. 본 연구에서는 지하수 아래 건설된 배수형 천층터널에 대한 모형실험을 실시하여 주변 지하수 흐름조건과 지반의 토피고에 따른 터널 주변의 지하수 흐름거동을 조사하였다. 실험결과 정상류/부정류의 지하수 흐름조건은 터널내 유입량이나 도달시간에는 영향을 미칠 수 있으나, 터널 주변 흐름거동에는 큰 영향을 미치지 못함을 확인할 수 있었다. 또, 토피고가 증가할수록 배수공이 위치한 터널 하부로의 유선 집중현상이 뚜렷하게 관찰되었다. 모형실험에 대한 수치해석결과, 배수형 천층터널 주변의 흐름거동을 수치해석으로도 재현 가능함을 확인하였다. 배수형 천층터널의 경우 수리경계조건이 터널주면 유출이 아닌 배수공 유출로 모사하는 것이 보다 타당함을 보였다.

  • PDF

순간변위시험(slug test)시 연직차수벽의 현장투수계수를 산정하기 위한 형상계수 연구 (General Steady-State Shape Factors in Analyzing Slug Test Results to Evaluate In-situ Hydraulic Conductivity of Vertical Cutoff Wall)

  • 임지희;이동섭;윙 테 바오;최항석
    • 한국지반공학회논문집
    • /
    • 제27권10호
    • /
    • pp.105-116
    • /
    • 2011
  • 지금까지 순간 변위시험 (slug test)를 이용해 연직차수벽의 현장투수계수를 평가할 수 있는 이론해는 제시된 바가 없다. 최근 부분 관입된 우물(well)형상에 적용 가능한 이론해에 관한 연구가 발표되었으나, 이는 무한 경계조건인 대수층에만 국한되고 좁은 벽체형상의 연직차수벽의 경계 조건에는 그대로 적용될 수 없다. 이러한 연직차수벽 경계조건을 고려하기 위해, 본 연구에서는 가상 우물법(method of imaginary well)을 도입하여 기존 이론해를 수정하였다. 연직차수벽의 경계조건은 기존 문헌에서 제시한 두 가지 조건을 적용하였다. 첫 번째 경계조건은 연직차수벽 경계에 일정 수두 조건을 적용하고, 두 번째는 경계면에 불투수 경계조건을 적용하였다. 본 논문에서는 연직차수벽의 현장투수계수를 평가할 수 있도록 각 경계조건에 대하여 정상 상태 조건에 대한 일반적인 형상계수를 제시하였다. 첫 번째 경계조건의 경우, 연직차수벽의 투수계수가 연직차수벽이 존재하지 않는 대수층 조건보다 크게 평가되었으며, 두 번째 방법의 경우는 더 작게 평가되었다. 본 연구에서 제시한 수정 이본해를 통해 얻어진 투수계수는 경험식을 바탕으로 무한 대수층에 적용하기 위해 제안된 Bouwer and Rice 방법을 보정하여 다양한 연직차수벽 경계조건에 대해 실제 현장투수계수가 Bouwer and Rice 방법에 의한 결과 보다 1.2~1.7배 큼을 확인하였다. 또한, 연직차수벽 뒷채움재의 압축성을 고려한 기존 해석결과와 비교로부터, 본 논문에서 제시한 이론해는 뒷채움재가 비압축성에 상응하는 값을 제시하는 것을 확인할 수 있었다.

Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient

  • Sun Taek Lim;Koung Moon Kim;Jun-young Kang;Taewan Kim;Dong-Wook Jerng;Ho Seon Ahn
    • Nuclear Engineering and Technology
    • /
    • 제56권10호
    • /
    • pp.4077-4086
    • /
    • 2024
  • The natural circulation system has been widely studied for use in various applications because of its inherent advantage. However, it has a key weakness called flow instability that makes the system unstable. Through massive previous research, the mechanisms of flow instability were analyzed, but there was an ambiguous aspect related to the effect of experimental parameters on the phenomenon. Particularly, there has been no report on the heat transfer performance of the system when flow instability phenomena were present. In this study, thermal-hydraulic phenomena of a two-phase natural circulation system that functions as a passive containment cooling system (PCCS) was investigated according to experimental parameters, namely, the temperature boundary (120-158 ℃) and exit loss coefficient (0-34.5) under atmospheric pressure conditions. The experimental results showed five different flow types in the loop. The flow modes that occurred by the interaction between flashing and boiling were classified by referring to the mass flow rate, void fraction, and visualization data. The system was more unstable when the temperature boundary conditions increased, but it was more stable when the exit loss coefficient increased. These results have only been confirmed in our research. The reason for the results is that the flow conditions are located on the boundary between Density Wave Oscillation I and the stable flow region, and that boundary does not have clear criteria. In addition, comparing the heat transfer performance of a system by heat rate can confirm the effect of flow instability on the thermal performance of the passive cooling system. As a result, the high exit loss coefficient stabilizes the system better than the low case and has similar heat removal performance.

지표면 열평형의 열-수리적 경계조건에 대한 수치해석 (Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance)

  • 신호성;정재형
    • 한국지반공학회논문집
    • /
    • 제37권12호
    • /
    • pp.25-31
    • /
    • 2021
  • 지반의 열-수리 현상에 대한 수치해석에서 경계조건은 해석결과의 정확도에 중요한 역할을 한다. 본 연구에서는 지반과 대기의 상호작용을 고려한 열-수리 경계조건을 제시하였다. 지면의 에너지 평형은 태양복사, 지구복사, 바람에 의한 대류, 수분 증발에 대한 잠열 그리고 지중으로의 열전도로 구성된다. 각각의 열흐름에 대한 방정식을 제시하고, 불포화 지반의 열-수리 현상에 대한 해석프로그램과 연계하여 수치해석을 수행하였다. 울산기상대에서 관측된 기상데이터를 이용한 수리-열적 해석에서 실측된 지표면 온도와 수치해석 결과가 매우 유사하였다. 낮시간의 수분 증발에 의한 잠재열은 비포장 지면의 온도를 낮추며, 야간시간에는 지면조건의 영향이 감소한 열적평형 상태에 도달하였다. 지면의 온도변화는 지중으로 깊어질수록 열확산으로 감소하였다. 지표면의 온도가 주요 관심사인 수치해석에서는 지반과 대기의 열-수리적 상호작용을 고려한 수치해석을 수행해야 한다.