• 제목/요약/키워드: hydraulic behaviour

검색결과 82건 처리시간 0.021초

A New Approach in Numerical Assessment of the Cavitation Behaviour of Centrifugal Pumps

  • Stuparu, Adrian;Susan-Resiga, Romeo;Anton, Liviu Eugen;Muntean, Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.104-113
    • /
    • 2011
  • The paper presents a new method for the analysis of the cavitation behaviour of hydraulic turbomachines. This new method allows determining the coefficient of the cavitation inception and the cavitation sensitivity of the turbomachines. We apply this method to study the cavitation behaviour of a large storage pump. By plotting in semi-logarithmic coordinates the vapour volume versus the cavitation coefficient, we show that all numerical data collapse in an exponential manner. By analysis of the slope of the curve describing the evolution of the vapour volume against the cavitation coefficient we determine the cavitation sensitivity of the pump for each operating point.

Modelling the hydraulic/mechanical behaviour of an unsaturated completely decomposed granite under various conditions

  • Xiong, Xi;Xiong, Yonglin;Zhang, Feng
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.75-87
    • /
    • 2021
  • Because the hydraulic/mechanical behaviour of unsaturated soil is more complicated than that of saturated soil, one of the most important issues in modelling unsaturated soil is to properly couple its stress-strain relationship with its water retention characteristics. Based on the results of a series of tests, the stress-strain relationship and the changes in suction and saturation of unsaturated completely decomposed granite (CDG, also called Masado) vary substantially under different loading/hydraulic conditions. To precisely model the hydraulic/mechanical behaviour of unsaturated Masado, in this study, the superloading concept was firstly introduced into an existing saturated/unsaturated constitutive model to consider the structural influences. Then a water retention curve (WRC) model considering the volumetric change in the soil, in which the skeleton and scanning curves of the water retention characteristics were assumed to shift in parallel in accordance with the change in the void ratio, was proposed. The proposed WRC model was incorporated into the constitutive model, and the validity of the newly proposed model was verified using the results of tests conducted on unsaturated Masado, including water retention, oedometer and triaxial tests. The accuracy of the proposed model in describing the stress-strain relationship and the variations in suction and saturation of unsaturated Masado is satisfactory.

차량 능동현가장치용 유압 제어시스템의 동적거동 해석 (Dynamic Behaviour Analysis of a Hydraulic Control System for Vehicle Active Suspension)

  • 정용길;이일영
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.51-59
    • /
    • 2000
  • Active suspension systems have been using for improving ride quality and stability for vehicles. An active suspension system is composed of a hydraulic pump, pressure control valves, hydraulic dampers, vehicle body, tires and other components. In this study, the mathematical model for the active suspension system based on the quarter car concept is derived, and a program for analysing the dynamic behaviour of the suspension system is developed. The computed results by the developed program are compared with the experimental results for confirming the reliability and usefulness of the developed program.

  • PDF

고압용 ACGT 시일의 접촉거동 특성에 대한 유한요소 해석 (on Contact Behaviour Characters of ACGT Seal for High pressure using Finite Element Analysis)

  • 최동열;김성원;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.350-355
    • /
    • 2001
  • Minimum clearance between the piston seal groove of a piston and cylinder bore to ensure against extrusion of the piston seal and leakage of working fluids is an important design parameter for a seal designer in hydraulic cylinder application. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of ACGT seal by finite element analysis to understand Contact Behaviour Characters

  • PDF

MODELING AND PARAMETER IDENTIFICATION FOR A PASSIVE HYDRAULIC MOUNT

  • Zhang, Y.X.;Zhang, J.W.;Shangguan, W.B.;Feng, Q.Sh.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.233-241
    • /
    • 2007
  • A lumped parameter model is proposed for the analysis of dynamic behaviour of a Passive Hydraulic Engine Mount (PHEM), incorporating inertia track and throttle, which is characterized by effective and efficient vibration isolation behaviour in the range of both low and high frequencies. Most of the model parameters, including volume compliance of the throttle chamber, effective piston area, fluid inertia and resistance of inertia track and throttle are identified by an experimental approach. Numerical predictions are obtained through a finite element method for responses of dynamic stiffness of the rubber spring. The experiments are made for the purpose of PHEM validation. Comparison of numerical results with experimental observations has shown that the present PHEM achieves good performance for vibration isolation.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

충전탑에서 수력학적 거동의 수학적 해석 연구 (A Study on the Mathematical Interpretation o Hydraulic Behaviour in Packing Tower)

  • 김석택
    • 한국대기환경학회지
    • /
    • 제17권1호
    • /
    • pp.51-56
    • /
    • 2001
  • This study was carried out to interpret mathematically hydraulic behaviour in packing tower which packed 50 mm plastic Hiflow-ring with a dimension of 300 mm wide and 1,400 mm high. In view of energy saving, the recent packing. 50 mm plastic Higlow-ring was superior to conventional packings because of low pressure drop in high loads. As relative error between numerically predicted and experimentally obtained values was less then 6% in the loading and flooding point, it found that therir results appeared to be adequate. Comparison of hose two values in both dry and wet packing conditions. relative errors amount to 3.96 and 5.6%, respectively. In order to evaluate the operating characteristics of packing, the type, size, and material for packings must be estimated in various system and loads. This study is able to calculated pressure drop, hold-up, gas and liquid loads using mathematical interpretation. For these calculation, the specific constants of each packings must be calculated first all. The method of mathematical interpretation in this study turned out to be superior to the existing methods because of reduced errors at loading and flooding point.

  • PDF

보 요소를 이용한 파이프의 구조-음향 연성해석 (Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element)

  • 서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF

Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory

  • Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.257-273
    • /
    • 2019
  • In this paper, the mechanical behaviour of functionally graded material beams is studied using the 3D Saint-Venant's theory, in which the section is free to warp in and out of its plane (Poisson's effects and out-of-plane warpings). The material properties of the FGM beam are distributed continuously through the thickness by several distributions, such as power-law distribution, exponential distribution, Mori-Tanaka schema and sigmoid distribution. The proposed method has been applied to study a simply supported FGM beam. The numerical results obtained are compared to other models in the literature, which show a high performance of the 3D exact theory used to describe the stress and strain fields in FGM beams.

고압용 웨어링의 접촉거동 특성에 대한 유한요소 해석 (on Contact Behaviour Characters of High pressure Wearing using Finite Element Analysis)

  • 최동열;고영배;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.356-363
    • /
    • 2001
  • Piston seal is a device designed to prevent leakage in split connecctions or between relatively moving part. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of Wearing by finite element analysis to understand Contact Behaviour Characters.

  • PDF