• Title/Summary/Keyword: hydraulic amplification

Search Result 16, Processing Time 0.025 seconds

A Concept and Energy performance of a Gravity Engine for Tidal and Hydro-Power (조수 및 소수력 발전을 위한 회수를 위한 중력엔진의 개념 및 에너지 정산)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • This paper is to propose a concept and performance of the gravity engine which could extract energy from sea or river as a clean and renewable and sustainable power, the tidal or hydro-power. The vertical motion of the buoyancy cylinder of the present gravity engine is converted to the mechanical work directly without any hydraulic loss. The increased gravity potential during high tide is harnessed proportional to the length of the buoyancy cylinder times tidal height which is greater than the conventional tidal power using water mill. This energy amplification results from the net energy gain between the resource energy and the imposed energy to extract water out of the buoyancy cylinder. Its efficiency is higher than the conventional water mill due to its direct mechanical conversion.

  • PDF

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System (전기-유압식 추력벡터제어 구동장치시스템의 합성공진 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • In this paper, the analysis results of synthetic resonance characteristics are described for the electrohydraulic thrust vector control actuation system. The synthetic resonance is induced by integration of position servo actuation system on the flexible launch vehicle mounting structure. The new resonance mode is synthesized due to composition of hydraulic resonance for electrohydraulic position servo system with inertia load condition and structural resonance for flexible mounting structure. This synthetic resonance can make stability of control system worse by feedback and amplification of control system. The exact nonlinear analysis model of this phenomenon is developed to predict and design a control algorithm for improvement characteristics. The DPF (Dynamic Pressure Feedback) control algorithm has been designed and has excellent resonance suppression capability.

  • PDF

The Experimental Study about Kinetic Change of Water Surface in the Chambers for Wave Energy Converter (파력발전용 수조실의 수면 운동 변화에 대한 실험적 연구)

  • Hadano, Kesayoshi;Moon, Byung-Young;Lee, Seong-Beom;Kim, Kwang-Jung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Experimental results are given for the vertical motion of water in the water chambers for wave energy converter aligned along the wave propagation direction in order to avoid the impulsive wave forces. This paper mainly focuses on the property of the amplitude of the vertical motion of the water surface in the chambers. The amplification has been investigated by dimensionless parameters of wave period to resonance period ratio of the U-shaped oscillation, $T/T_r$, chamber size to wave length ratio, l/L, water depth to wave length ratio, h/L, amplitude of up-down motion of water particles to draft of the front wall ratio, ${\zeta}/D$. It has been shown that l/L should be less than 0.1 and as $T/T_r$ approaches unity the up-down of the water in the chambers is amplified. Also, the structure of the walls which form th water chambers has been examined roughly. It is deduced that the chambers set on both sides of the hull of a single-point moored floating vessel is preferable to those set along a fixed structure such as breakwaters.