• Title/Summary/Keyword: hydraulic actuator control

Search Result 214, Processing Time 0.027 seconds

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

A Position Control of Nonlinear Hydraulic System using Variable Design-Parameter Fuzzy PID Controller (가변 설계 파라미터 퍼지 PID 제어기를 이용한 비선형 유압시스템의 위치 제어)

  • 김인환;김종화;김진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.136-144
    • /
    • 2004
  • In general a hydraulic system which uses a single rod hydraulic as an actuator is modeled as a nonlinear system and reveals uncertain Parameter characteristics such as the density variation of hydraulic oil and is subject to load variations and severe disturbances during operation. A variable design-parameter fuzzy PID controller is adopted to solve these undesirable internal and external problems and its effectiveness is verified through computer simulations for control performance and real time control possibility.

Adaptive Position Controller Design of Electro-hydraulic Actuator Using Approximate Model Inversion (근사적 모델 역변환을 활용한 전기-유압 액추에이터의 적응 위치 제어기 설계)

  • Lee, Kyeong Ha;Baek, Seung Guk;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • An electro-hydraulic actuator (EHA) is widely used in industrial motion systems and the increasing bandwidth of EHA position control is important issue. The model-inverse feedforward controller is known to extend the bandwidth of system. When the system has non-minimum phase (NMP) zeros, direct model inversion makes system unstable. To overcome this problem, an approximate model-inverse method is used. A representative approximate model inversion method is zero phase error tracking control (ZPETC). However, if zeros locate right half plane of z-plane, the approximate inverse model amplifies the high-frequency response. In this paper, to solve the problem of ZPETC, an adaptive model-inverse control is proposed. The adaptive algorithm updates feedforward term in real-time. The effectiveness of the proposed adaptive model-inverse position control strategy is verified by comparison with typical proportional-integral (PI) control and feedforward control by experiments. As a result, the proposed adaptive controller extends the bandwidth of EHA position control.

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Performance Analysis of an Electro-Hydrostatic Actuator (Electro-Hydrostatic Actuator의 성능해석)

  • Kim, Do-Hyun;Kim, Doo-Man;Hong, Yeh-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.316-322
    • /
    • 2007
  • The EHA(Electro-hydrostatic Actuator) reveals completely different characteristics from the conventional valve-controlled Electro-hydraulic actuators. In this paper, its mathematical model including nonlinear elements was derived to be verified by experiments. Based on this, a simulation program was developed for the EHAs consisting of an electric motor driven hydraulic pump, pipe lines and a cylinder. The influence of important design parameters such as peak motor torque and rotational inertia moment of the hydraulic pump on control performance was investigated, where the test condition was intentionally selected so that the motor torque was saturated during the transient phase. As a result, design requirements for improving the control accuracy under full speed operation conditions of the EHAs were investigated.

A study on development of hydraulic active suspension system (유압식 능동 현가시스템의 개발에 관한 연구)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

Development of Technology for Printing Pressure Control of Blanket Cylinder (블랭킷 실린더의 인압제어 기술개발)

  • Ham, Yeong-Bok;Yun, So-Nam;Kim, Gwang-Yeong;Choe, Byeong-O
    • 연구논문집
    • /
    • s.32
    • /
    • pp.15-22
    • /
    • 2002
  • In offset or intaglio printing machine, it's operated with combination of blanket cylinder and impression cylinder. The blanket cylinder has some number of grooves to attach the blanket on surface. In case of operating the printing machine, it has generate mechanical impact noise when the two cylinders encounter with the grooves. So, in this study, we developed a printing pressure control algorithm with hydraulic servo control system. We also proposed simulation model of experimental device to analysis the throw on force response of hydraulic servo actuator. Finally, we have reduced the mechanical impact noise and improved printing quality with a groove detecting signal and PI control of hydraulic servo actuator.

  • PDF

A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System (차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구)

  • 윤영환;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

Advanced Pressure Control of Piezoelectric Valve on Electro-hydraulic Braking (피에조밸브를 적용한 전자유압브레이크의 압력제어)

  • DocKo, Jong-Hun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1576-1577
    • /
    • 2007
  • As a intelligent valve piezoelectric valve is to applied to various fields of application. Piezoelectric valves have fast response time and good linearity for pressure control but its hysteresis displacement by its stack actuator influences on pressure control in electro-hydraulic braking. Solenoid valves are traditional element to control hydraulic pressure but this paper proposes piezoelectric valve for brake pressure control with hysteresis compensation.

  • PDF