• Title/Summary/Keyword: hydration characteristics

Search Result 382, Processing Time 0.026 seconds

Effects of Absorbent Polymer on the Moisture Resistance and Hydration Characteristics of Cement Pastes (시멘트 페이스트의 특성에 미치는 흡수성폴리머의 영향)

  • 나종균;김창은;이승규
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.539-546
    • /
    • 1999
  • Absorbent polymer-cement composites were fabricated by the semi-powder mixing OPC(ordinary Portland cement) with an absorbent polymer. The effects of absorbent polymer on the mechanical properties and the hydration characteristics were observed and the polymer-cement interaction also discussed. Absorbent polymer-cement composites showed the value of total porosity of 8vol% the value of 28 days flexural strength was up to 280 Kgf/cm2 in the case of absorbent polymer-cement composite at 1 wt% absorbent polymer content and microstructure of absorbent polymer-cement composite has been observed more dense than that of OPC paste. Accordingly the permeability of compositewas improved and so the moisture resistance was also increased. Adding polymer did not retard the hydration of OPC. It was considered from the results of IR(infrared) analysis that the functional group of absorbent polymer would be changed from unidentate to bidentate during by the hydration of cement minerals.

  • PDF

Effects of carbonation on hydration characteristics of ordinary Portland cement at pre-curing condition

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Raman spectroscopy is effective to investigate functional groups via molecular vibration. The technique offers the structural information of compounds including subtle changes in the chemical composition of local atomic coordination without critical damage. Thus, the effect of carbonation on the hydration characteristics of Portland cement under pre-curing conditions for carbonation was investigated via Raman spectroscopy in the present study. Gaseous CO2 was injected within 60 seconds, and the reaction time was varied from 0 minute to 90 minutes. The test results indicated that the Ca/Si ratio of C-S-H reduced immediately after mixing and then the C-S-H with a relatively high Ca/Si ratio coexisted as the reaction time increased. The calcium carbonates formed in the present study included calcite and amorphous calcium carbonates. The test results via Raman spectroscopy provide valuable information about the carbonation characteristics of OPC under pre-curing conditions for carbonation.

Early Hydration Properties of BFS by a Change of pH (pH 변화에 따른 고로수쇄 BFS의 초기 수화 특성)

  • Kang, Hyun Ju;Lee, Woong Geol;Song, Myong Shin;Kang, Seung Min;Kim, Kyeng Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.442-447
    • /
    • 2012
  • This study investigated on the early hydration and physical characteristics of BFS by pH variation. NaOH solution was used as a pH activator. In the range from pH 12 to pH 14, Experiment was compared the hydration propertied of OPC(Ordinary Portland Cement) and BFS(Blast Furnace BFS) and BFS containing 2 wt% of gypsum. It was found that CAH(Calcium Aluminate Hydrates) phases and CSH(Calcium Silicate Hydrates) phases were formed during the early hydration of BFS, and that CAH phases, CSH phases and ettringites were formed during the early hydration of BFS containing 2 wt% of gypsum. Furthermore, early hydration of BFS and BFS containing 2 wt% of gypsum were faster then OPC at pH 14, and the 1 day compressive strength of BFS increased by approximately 30% compared to OPC, and BFS containing 2 wt% of gypsum also increased by approximately 40% compared to OPC.

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

Hydration-heat Characteristics of Mortar mixed with Strontium Hydration-heat Reducing Material (스트론튬계 수화열저감재 혼입 모르타르의 수화발열 특성)

  • Kim, Goo-Hwan;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.33-34
    • /
    • 2018
  • As a result of measuring the compressive strength and semi-adiabatic temperature rise of the mixed mortar, it was confirmed that the mortar mixed with the hydration heat reducing material is effective. On the other hand, the compressive strength showed similar strength to that of moderate heat Portland cement until the age 7 days, but after that, the tendency of the strength development to be delayed was confirmed.

  • PDF

Thermal heat reduction of concrete using LHT (수화열 저감제를 이용한 콘크리트 수화열 저감법 개발)

  • Lee, Sang-Ho;Kim, Yong-Ro;Jung, Yang-Hee;Kim, Do-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.701-704
    • /
    • 2006
  • Recently, the attention is paid to the problem of thermal crack by hydration heat according to the increase of high strength and mass concrete structures. At this point, various research has been carried out for the control of hydration heat in high strength and mass concrete. As a part of the research, the application of Low Heat Technology (LHT) for the control of thermal crack by hydration heat was investigated in this study. To investigate the application, it was selected LHT which can reduce hydration heat of concrete with effect in series I and II. Also, it was investigated the characteristics of hydration heat generation of low heat concrete using LHT with binder types in seriesIII.

  • PDF

Effects of nanomaterials on hydration reaction, microstructure and mechanical characteristics of cementitious nanocomposites: A review

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Application of nanomaterials to cementitious composites has been attempted with the rapid development of nanotechnology since the 1990s. Various nanomaterials such as carbon nanotube, graphene, nano-SiO2, nano-TiO2, nano-Al2O3, nano-Clay, and nano-Magnetite have been applied to cementitious composites to improve the mechanical properties and the durability, and to impart a variety of functionality. In-depth information on the effect of nanomaterials on the hydration reaction, the microstructure, and the mechanical properties of cementitious nanocomposites is provided in the present study. Specifically, this paper mostly deals with the previous studies on the heat evolution characteristics of cementitious nanomaterials at an early age of curing, and the pore and the compressive strength characteristics of cementitious nanocomposites. Furthermore, the effect of nanomaterials on the cementitious nanocomposites was systematically discussed with the reviews.

Strength Estimation Model for Early-Age Concrete Considering Microstructural Characteristics (미세구조 특성을 고려한 초기재령 콘크리트의 강도예측모델)

  • 황수덕;김의태;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.397-402
    • /
    • 2001
  • Microstructural characteristics such as hydrates and porosity greatly influence the development of concrete strength. In this study, a strength estimation model for early-age concrete considerig, the microstructural characteristics was proposed, which considers the effects of both an increment of degree of hydration and capillary porosity on a strength increment. Hydration modeling and compressive strength test with curing temperature and curing ages were carried out. By comparing test results with estimated strength, it is found that the strength estimation model can estimate compressive strength of early-age concrete with curing ages and curing temperature within a margin of error.

  • PDF

Hydration Heat Properties of Low Heat Concrete using GGBS (슬래그를 사용한 저발열 콘크리트의 수화열 특성)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.234-235
    • /
    • 2013
  • In order to evaluate the properties of reduced heat of hydrationof concrete mixed with slag, in the present study, we have evaluated by experimental and analytical characteristics of heat of hydration of concrete using the latent heat material and slag.

  • PDF

The origins and evolution of cement hydration models

  • Xie, Tiantian;Biernacki, Joseph J.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.647-675
    • /
    • 2011
  • Our ability to predict hydration behavior is becoming increasingly relevant to the concrete community as modelers begin to link material performance to the dynamics of material properties and chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting, nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability, and all manner of mechanical response are linked to hydration. As a way to enable the modeling community to better understand hydration, a review of hydration models is presented offering insights into their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in the 1920's and continues to the present, and is marked by a number of critical milestones. Unfortunately, the origins and physical interpretation of many of the most commonly used models have been lost in their overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some organization, models were sorted into four categories based primarily on their mathematical and theoretical basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-physical and simulation environments. This review provides a concise catalogue of models and in most cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by linking them to their theoretical origins, thereby making their derivations and physical interpretations more transparent. Models are also used to fit experimental data so that their characteristics and ability to predict hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of models is given along with some insights into the nature of future work yet needed to develop the next generation of cement hydration models.