• Title/Summary/Keyword: hybrid-web

Search Result 239, Processing Time 0.03 seconds

A Integrated Suite for Database Benchmarks (데이터베이스 벤치마크를 위한 통합 도구)

  • Jeong Hoe-Jin;Lee Sang-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.165-174
    • /
    • 2006
  • As new database systems are developed or new functions are added to existing database systems, database developers or users would like to evaluate new database systems or new functions. This paper presents an integrated database benchmark suite. The integrated suite offers genetic benchmarks, custom benchmark, and hybrid benchmarks to users on a unified Web user interface. With regard to text data generation, the integrated suite supports eight data distributions with three data types. The integrated suite can also generate XML data in three different ways. Users can run benchmarks in realistic environments by performing the workload generation facility of the integrated suite, which generates composite workloads similar to real-world workloads. Using supporting tools, users can easily implement new generic and custom benchmarks in the integrated suite. An illustrative demonstration to add a new custom benchmark into the integrated suite is presented.

The Study on the Silver Fashion Icon Iris Apfel's Fashion Style (실버 패션 아이콘 Iris Apfel의 패션 스타일에 관한 연구)

  • Kim, Janghyeon;Kim, Youngsam
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.101-113
    • /
    • 2020
  • This study considers aesthetic characteristics by examining the fashion style of the silver fashion icon Iris Apfel. The research methods were a quantitative and qualitative analysis of Iris Apfel's images that were collected from 2015 to 2019 on various web-sites according to four criterions following advanced research analysis of fashion style. The results of the study are as follows. The analysis results on the fashion style of Iris Apfel, an icon of silver style, showed that cocoon, barrel and A-line silhouettes appeared most in terms of silhouettes. Second, in terms of colors, achromatic colors dominated among solid colors while one particular vivid color appeared most it came to mixed color. In terms of multi colors, these appeared according to the patterns applied to her clothing, in particular, colorful colors were used to emphasize splendor. Third, flower, bird and geometric patterns appeared most in terms of material patterns. Lastly, it was found that white short cut hair, large necklaces or bangle bracelets, over-sized black glasses and fur mufflers or canes were used in terms of hair and accessories. The features derived through analysis of the fashion style of Iris Apfel, an icon of silver style, are as follows. The first feature is exaggeration through splendid primary colors and over-sized silhouettes. The second feature is the hybrid of modern composition methods using natural images and exotic preferences. The third feature is her representation of identity using fixed items.

A Survey on Admission Control Mechanisms for providing QoS in the IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 QoS 제공을 위한 허가 제어 연구)

  • Lee, Kye-Sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.535-538
    • /
    • 2005
  • Wireless LANs based on the IEEE 802.11 standard are widely spread for use nowadays. Traffic which are conveyed over the WLANs change rapidly from normal data such a Email and Web pages, to multimedia data of high resolution video and voice. To meet QoS (Quality of Service) required by these multimedia traffic, the IEEE 802 committee recently has developed a new standard, IEEE 802.11e. IEEe 802.11.e contains two MAC mechanisms for providing QoS: EDCA(Enhanced Distributed Channel Access) and HCCA (HCF Controlled Channel Access). Using these standardized MAC mechanisms as a building platform, various admission control mechanisms can be combined to offer QoS gurantees for multimedia traffic. This paper surveys these research efforts.

  • PDF

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

Using Roots and Patterns to Detect Arabic Verbs without Affixes Removal

  • Abdulmonem Ahmed;Aybaba Hancrliogullari;Ali Riza Tosun
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • Morphological analysis is a branch of natural language processing, is now a rapidly growing field. The fundamental tenet of morphological analysis is that it can establish the roots or stems of words and enable comparison to the original term. Arabic is a highly inflected and derivational language and it has a strong structure. Each root or stem can have a large number of affixes attached to it due to the non-concatenative nature of Arabic morphology, increasing the number of possible inflected words that can be created. Accurate verb recognition and extraction are necessary nearly all issues in well-known study topics include Web Search, Information Retrieval, Machine Translation, Question Answering and so forth. in this work we have designed and implemented an algorithm to detect and recognize Arbic Verbs from Arabic text.The suggested technique was created with "Python" and the "pyqt5" visual package, allowing for quick modification and easy addition of new patterns. We employed 17 alternative patterns to represent all verbs in terms of singular, plural, masculine, and feminine pronouns as well as past, present, and imperative verb tenses. All of the verbs that matched these patterns were used when a verb has a root, and the outcomes were reliable. The approach is able to recognize all verbs with the same structure without requiring any alterations to the code or design. The verbs that are not recognized by our method have no antecedents in the Arabic roots. According to our work, the strategy can rapidly and precisely identify verbs with roots, but it cannot be used to identify verbs that are not in the Arabic language. We advise employing a hybrid approach that combines many principles as a result.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression

  • Quang-Viet Vu;Dai-Nhan Le;Thai-Hoan Pham;Wei Gao;Sawekchai Tangaramvong
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.679-695
    • /
    • 2024
  • This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.

Odysseus/Parallel-OOSQL: A Parallel Search Engine using the Odysseus DBMS Tightly-Coupled with IR Capability (오디세우스/Parallel-OOSQL: 오디세우스 정보검색용 밀결합 DBMS를 사용한 병렬 정보 검색 엔진)

  • Ryu, Jae-Joon;Whang, Kyu-Young;Lee, Jae-Gil;Kwon, Hyuk-Yoon;Kim, Yi-Reun;Heo, Jun-Suk;Lee, Ki-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.412-429
    • /
    • 2008
  • As the amount of electronic documents increases rapidly with the growth of the Internet, a parallel search engine capable of handling a large number of documents are becoming ever important. To implement a parallel search engine, we need to partition the inverted index and search through the partitioned index in parallel. There are two methods of partitioning the inverted index: 1) document-identifier based partitioning and 2) keyword-identifier based partitioning. However, each method alone has the following drawbacks. The former is convenient in inserting documents and has high throughput, but has poor performance for top h query processing. The latter has good performance for top-k query processing, but is inconvenient in inserting documents and has low throughput. In this paper, we propose a hybrid partitioning method to compensate for the drawback of each method. We design and implement a parallel search engine that supports the hybrid partitioning method using the Odysseus DBMS tightly coupled with information retrieval capability. We first introduce the architecture of the parallel search engine-Odysseus/parallel-OOSQL. We then show the effectiveness of the proposed system through systematic experiments. The experimental results show that the query processing time of the document-identifier based partitioning method is approximately inversely proportional to the number of blocks in the partition of the inverted index. The results also show that the keyword-identifier based partitioning method has good performance in top-k query processing. The proposed parallel search engine can be optimized for performance by customizing the methods of partitioning the inverted index according to the application environment. The Odysseus/parallel OOSQL parallel search engine is capable of indexing, storing, and querying 100 million web documents per node or tens of billions of web documents for the entire system.

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.