• Title/Summary/Keyword: hybrid steel frame

Search Result 65, Processing Time 0.027 seconds

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Experimental and numerical investigations into the composite behaviour of steel frames and precast concrete infill panels with window openings

  • Teeuwen, P.A.;Kleinman, C.S.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.1-21
    • /
    • 2010
  • As an alternative for conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed, enabling the assembly of tall buildings directly from a truck. It consists of steel frames with discretely connected precast concrete infill panels provided with window openings. Besides the stiffening and strengthening effect of the infill panels on the frame structure, economical benefits may be derived from saving costs on materials and labour, and from reducing construction time. In order to develop design rules for this type of structure, the hybrid infilled frame has recently been subjected to experimental and numerical analyses. Ten full-scale tests were performed on one-storey, one-bay, 3 by 3 m infilled frame structures, having different window opening geometries. Subsequently, the response of the full-scale experiments was simulated with the finite element program DIANA. The finite element simulations were performed taking into account non-linear material characteristics and geometrical non-linearity. The experiments show that discretely connected precast concrete panels provided with a window opening, can significantly improve the performance of steel frames. A comparison between the full-scale experiments and simulations shows that the finite element models enable simulating the elastic and plastic behaviour of the hybrid infilled frame.

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Experimental Evaluation for Structural Performance of Hybrid Damper Combining Steel Slit and Rotational Friction Damper (강재 슬릿과 회전 마찰형 감쇠 장치를 결합한 복합 감쇠 장치의 실험적 구조 성능 평가)

  • Kim, Yu-Seong;Kang, Joo-Won;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.101-109
    • /
    • 2019
  • In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.

Evaluation of ductility capacity of steel-timber hybrid buildings for seismic design in Taiwan

  • Chen, Pei-Ching;Su, I-Ping
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2022
  • Recently, steel-timber hybrid buildings have become prevalent worldwide because several advantages of both steel and timber structures are maintained in the hybrid system. In Taiwan, seismic design specification related to steel-timber hybrid buildings remains void. In this study, the ductility capacity of steel-timber hybrid buildings in Taiwanese seismic design specification is first proposed and evaluated using nonlinear incremental dynamic analysis (IDA). Three non-linear structural models, 12-story, 8-story, and 6-story steel-timer hybrid buildings were constructed using OpenSees. In each model, Douglas-fir was adopted to assemble the upper 4 stories as a timber structure while a conventional steel moment-resisting frame was designated in the lower part of the model. FEMA P-695 methodology was employed to perform IDAs considering 44 earthquakes to assess if the ductility capacity of steel-timber hybrid building is appropriate. The analytical results indicate that the current ductility capacity of steel moment-resisting frames can be directly applied to steel-timber hybrid buildings if the drift ratio of each story under the seismic design force for buildings in Taiwan is less than 0.3%. As a result, engineers are able to design a steel-timber hybrid building straightforwardly by following current design specification. Otherwise, the ductility capacity of steel-timber hybrid buildings must be modified which depends on further studies in the future.

An Experimental Study on Fire Resistance Performance of Curtain-Wall System with Steel-Aluminum Hybrid Frame (스틸-알루미늄 복합 프레임을 갖는 커튼월의 내화성능에 관한 실험적 연구)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Cho, Bong-Ho;Kim, Heung-Yeal
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.104-111
    • /
    • 2011
  • Aluminum has been widely used as frame materials in the curtain walls. Recently, use of steel as a curtain wall frame is being considered due to its higher strength and thermal resistance than aluminum. In this study, fire tests on the basis of EN 13830 were performed with aluminum and steel-aluminum hybrid curtain walls. From the tests, fire resistance integrity, thermal insulation, and radiation properties were evaluated for both systems and compared. According to the test results, the steel-aluminum hybrid curtain wall showed better fire-performance than the typical aluminum curtain wall for the fire resistance integrity and radiation properties. Although, the fire resistance performance for the insulation property was 6 min for both the two frames, the collapses were occurred at 36 min for the steel-aluminum hybrid curtain wall and at 13 min for the aluminum hybrid curtain wall.

Seismic reliability evaluation of steel-timber hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Lam, Frank;Zhou, Ruirui;Li, Minghao
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.