• 제목/요약/키워드: hybrid shear connection

검색결과 31건 처리시간 0.024초

강재-콘크리트 하이브리드 보의 일축 전단 및 전단마찰 거동에서 장부철근의 영향평가 (Evaluation of Dowel Bar on the One-way Shear and Shear Friction Behaviors of Hybrid Beams Composed of Steel and Reinforced Concrete Elements)

  • 권혁진;양근혁;홍승현
    • 콘크리트학회논문집
    • /
    • 제29권1호
    • /
    • pp.93-100
    • /
    • 2017
  • 이 연구에서는 시공성이 단순한 연성형 절점을 갖는 HSRC 하이브리드 보 시스템의 콘크리트 보 영역에서의 일축 전단 및 연결절점 영역에서의 전단마찰 거동을 평가하였다. 일축 전단의 실험은 내민보 시스템으로써 파괴경간의 전단경간비는 1.6이다. 연결절점 영역에서의 전단마찰 거동을 평가하기 위한 실험은 상부 2점 집중하중으로써 순 전단경간비는 0.1이다. 실험 결과, 연결절점에서 배근된 장부철근이 HSRC 보의 균열 진전에 미치는 영향은 미미하였지만, 부재의 전단내력은 약 25% 향상시켰다. HSRC 보의 일축 전단 및 전단마찰 내력은 장부철근의 유무와 상관없이 ACI 318-14 및 EC2 설계식을 이용하여 안전 측에서 평가될 수 있었다.

T 형강을 사용한 합성골조 보-기둥 접합부의 휨 저항성능에 관한 연구 (A Study on the Moment Resisting Performance of the Hybrid Beam-Column Connection System with Structural Tee)

  • 임대성;최광호;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.597-602
    • /
    • 1998
  • The composite systems, consisting of R/C Columns-Steel Beams, are reasonable structures because of their constructional and economical advantages, workability and so on. But, it is difficult to apply the composite systems to actual design due to material dissimilarity and complicate stress flow in the connection. This study aims to propose the hybrid beam-column connection system with structural tee and through experimental research make clear the shear and moment resistance capacity and stress transfer mechanism.

  • PDF

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

커플링 보의 접합방식에 따른 복합 벽체 시스템에 관한 연구 (A Study on Hybrid Wall System on Connection Type of Coupling Beam)

  • 윤현도;박완신;한병찬;윤여진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.201-208
    • /
    • 2003
  • 철근콘크리트 코어 벽체와 외부 철골골조로 구성된 복합벽체시스템은 중앙 코아 전단벽 주변의 오픈공간을 갖는다. 이와 같은 복합 벽체시스템은 연결된 벽체가 대부분의 횡하중에 저항하고 벽체저면과 커플링 보에서 대부분의 에너지를 소산할 수 있는 설계기법을 개발하는 것이 필요하다. 본 연구논문은 커플링 보의 접합방식 및 층규모를 주변수로 수직하중 및 풍하중과 지진하중을 받는 복합 벽체시스템에 대하여 전단력, 전도모멘트, 최대 횡변위, 층간변위비 및 동적특성을 규명하였다.

하이브리드 해상풍력발전 지지구조물의 콘크리트 베이스-슬리브 연결부에 대한 실험 연구 (Experimental Study for Concrete Base to Sleeve connection of Hybrid Substructure for Offshore Wind Turbine)

  • 이정화;변남주;김성환;박재현;강영종
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.79-87
    • /
    • 2016
  • 본 논문에서는 하이브리드 해상풍력발전 지지구조물의 콘크리트베이스와 파일기초를 연결하는 베이스-슬리브 연결부를 제시하고 이를 실험적으로 검증하였다. 베이스-슬리브 연결부의 펀칭 전단 강도와 구조거동을 분석을 위하여, 철근비와 하중조건을 변수로 하는 3개의 연결부 실험체에 대하여 펀칭전단실험이 실시하였다. 실험 결과, 베이스-슬리브 연결부의 펀칭전단강도와 강성은 베이스의 철근비에 주로 영향을 받는 것으로 나타났다. 축력과 모멘트가 동시에 작용되는 하중 조건은 연결부의 강성에는 영향을 미치지 않으나 축력-모멘트 상호작용에 의하여 강도에 영향을 미치는 것으로 나타났다. 또한, 각 실험체의 파괴거동과 펀칭전단의 위험단면에 대해 검토되었다.

기존 학교건물 골조와 내진보강요소 일체화를 위한 변형경화형 시멘트 복합체를 적용한 스터드 전단 접합부의 구조성능 (Structural Performance of Stud Shear Connections using SHCC between Existing School Building Frame and Seismic Retrofitting Elements)

  • 김성호;윤현도
    • 교육시설 논문지
    • /
    • 제20권4호
    • /
    • pp.35-43
    • /
    • 2013
  • Some results of experimental investigation conducted to assess the effect of cement composite strength and ductility on the shear behavior and crack-damage mitigation of stud connections between existing reinforced concrete frame in school buildings and seismic strengthening elements from cyclically direct shear tests are described. The cement composite strengths include 50 for medium strength and 70 MPa for high strength. Two types of cement composites, strain-hardening cement composite (SHCC) and non-shrinkage mortar, are used for stud shear connection specimens. The special SHCCs are reinforced with hybrid 0.2% polyethylene (PE) and 1.3% polyvinyl alcohol (PVA) fibers at the volume fraction and exhibits tensile strain capacity ranging from 0.2 to 0.5%. Test result indicates that SHCC improves the seismic performance and crack-damage mitigation of stud shear connections compared with stud connections with non-shrinkage mortar. However, the performance enhancement in SHCC stud connections with transverse and longitudinal reinforcements is less notable for those without additional reinforcement.

Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement

  • Hafidi, Mariam;Kharchi, Fattoum;Lefkir, Abdelouhab
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.679-700
    • /
    • 2013
  • Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

경사못이 적용된 CLT-콘크리트 접합부의 하중전달능력 (Load Bearing Capacity of CLT - Concrete Connections with Inclined Screws)

  • 김경태;김종호
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.3-13
    • /
    • 2018
  • Load bearing capacity of dowel type fasteners loaded perpendicular to the shear plane is determined based on Johansen's yield theory (Johansen, 1949). In case of inclined screws whose axis is no longer perpendicular, the ultimate load of connection increases because of additional axial withdrawal capacity. To calculate load bearing capacity for inclined screws, KBC2016 and Eurocode5 provide design equations using the combination of two effects; axial and bending strength. Although their equations have been validated for a long time, there is still minimal information how to apply them for concrete-CLT joints. Since there are not many test data available, engineers have to make certain assumptions and thus results may look inconsistent in practice. In this paper, authors would like to describe the current approach and assumptions indicated by KBC2016 and Eurocode 5 and how they match the experimental results in terms of shear strength of CLT-concrete connections. To fulfill the objective, several push-out tests were performed on nine different test specimens. Each specimen has different penetration angles and depths. By analyzing load-displacement curves, the maximum shear strength, stiffness, and ductility were obtained. Shear strength values were compared with the current design codes and theoretical equations proposed in this paper. Observations on stiffness and ductility were briefly discussed.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.