• Title/Summary/Keyword: hybrid rockets

Search Result 23, Processing Time 0.027 seconds

Flow Rate Control of Gaseous Oxygen for a $HTPB/GO_2$ Hybrid Rocket ($HTPB/GO_2$ 하이브리드 로켓의 산화제 유량제어)

  • Oh Hwa-Young;Moon Sung-Hwan;Huh Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.251-254
    • /
    • 2004
  • Hybrid rockets have many advantages over solid and liquid rockets. Hybrid rockets put forth high $I_{sp}$ like liquid rockets in spite of simple structure and low cost. As oxidizer flow rate is increased, thrust of hybrid rocket is increased accordingly. In this study, lab-scale hybrid rocket is designed, fabricated and tested. This system consists of lab-scale hybrid rocket motor, ignition system, flow system and data aquisition system. In order to control oxidizer flow rate, we construct flow rate control system by using needle valve and stepping motor.

  • PDF

Preliminary Study of Thrust Control for Hybrid Rockets (하이브리드 로켓의 추력제어 기법에 대한 기초연구)

  • Yun, Dong-Ik;Kang, Wan-Kyu;Lee, Young-Woo;Lee, Jong-Lyul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.257-260
    • /
    • 2008
  • In order to control thrust of propulsion system, we built the 50 Newton level PE-GOx hybrid rocket, and changed the mass flow rate of GOx. From the preliminary experiential results, we could see possibility of controlling thrust of hybrid rockets by controlling mass flow rate of GOx.

  • PDF

Study on Weather Modification Hybrid Rocket Experimental Design and Application (기상조절용 하이브리드 로켓의 실험 설계 및 활용연구)

  • Joo Wan Cha;Bu-Yo Kim;Miloslav Belorid;Yonghun Ro;A-Reum Ko;Sun Hee Kim;Dong-Ho Park;Ji Man Park;Hae Jung Koo;Ki-Ho Chang;Hong Hee Lee;Soojong Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.203-216
    • /
    • 2024
  • The National Institute of Meteorological Sciences in Korea has developed the Weather Modification Hybrid Rocket (WMHR), an advanced system that offers enhanced stability and cost-effectiveness over conventional solid-fuel rockets. Designed for precise operation, the WMHR enables accurate control over the ejection altitude of pyrotechnics by modulating the quantity of oxidizer, facilitating specific cloud seeding at various atmospheric layers. Furthermore, the rate of descent for pyrotechnic devices can be adjusted by modifying parachute sizes, allowing for controlled dispersion time and concentration of seeding agents. The rocket's configuration also supports adjustments in the pyrotechnic device's capacity, permitting tailored seeding agent deployment. This innovation reflects significant technical progression and collaborations with local manufacturers, in addition to efforts to secure testing sites and address hybrid rocket production challenges. Notable outcomes of this project include the creation of a national framework for weather modification technology utilizing hybrid rockets, enhanced cloud seeding methods, and the potential for broader meteorological application of hybrid rockets beyond precipitation augmentation. An illustrative case study confirmed the WMHR's operational effectiveness, although the impact on cloud seeding was limited by unfavorable weather conditions. This experience has provided valuable insights and affirmed the system's potential for varied uses, such as weather modification and deploying high-altitude meteorological sensors. Nevertheless, the expansion of civilian weather rocket experiments in Korea faces challenges due to inadequate infrastructure and regulatory limitations, underscoring the urgent need for advancements in these areas.

Experimental Investigation of a Regression rate On Hybrid Rocket Engine

  • Park, J. W.;S. Krishnan;Lee, C. W.;M. W. Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.524-527
    • /
    • 2004
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. However, the engines have not yet been used in practical rocket systems, due mainly to the disadvantage of hybrid combustion, such as low fuel regression rate. In this study, lab-scale hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Test firings with thrusts up to 300 N were conducted with GOX and transparent PMMA. Thrust was calculated with the pressure of the combustion chamber and the regression rate was measured in with variation of oxidizer flow rate. The regression rates showed a strong dependency on GOX mass flux. The frequency analysis technique of the bulk-mode oscillation of motor was applied to a hybrid rocket motor and was based on the principle that this frequency was inversely proportional to the square root of the chamber volume. Several problems and solutions of operating hybrid rocket were presented.

  • PDF

The Study on Solid Fuel Regression Rate of Swirl Hybrid Rocket (선회류 하이브리드 로켓의 고체 연료 후퇴율에 관한 연구)

  • Park JongWon;Park JooHyuk;Lee ChoongWon;Yoon MyungWon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.53-56
    • /
    • 2005
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, swirl flow hybrid motor was designed and manufactured. And the methods of regression rate improvement wire considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured in low flow rate of oxidizer. Several problems and solutions of operating hybrid rocket was presented.

  • PDF

The Effect of Swirl Flow on Solid Fuel Regression Rate of Hybrid Rocket (선회류 하이브리드 로켓의 고체 연료 후퇴율에 관한 연구)

  • Park Jong-Won;Park Joo-Hyuk;Lee Choong-Won;Yoon Myung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.311-317
    • /
    • 2005
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, swirl flow hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured in low flow rate of oxidizer. Several problems and solutions of operating hybrid rocket was presented.

  • PDF

Study on the Combustion of the Hybrid Rocket (하이브리드 로켓의 연소현상 연구)

  • ;S. Krishnan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.126-130
    • /
    • 2003
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, lab-scale hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured in low flow rate of oxidizer. Several problems and solutions of operating hybrid rocket was presented.

  • PDF

Now and the future of Hybrid rocket propulsion system (하이브리드 로켓 추진기관의 현황과 개발방안)

  • Lee Junho;Choi Sunghan;Whang Jongsun;Choi Younggi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.79-82
    • /
    • 2005
  • The hybrid rocket has been known for over 50 years. It is safe and cheap but wasn't widely used for the deficit of low regression rate. However, the hybrid rocket propulsion system will replace a lot of fields of missiles, rockets and propulsion systems of launch vehicles with new development of paraffin based solid fuel composition

  • PDF

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

Research of the Improvement of Solid Fuel Regression Rate in Swirl Hybrid Rocket (선회류 하이브리드 로켓에서 고체 연료 후퇴율 향상에 대한 연구)

  • Park Jong-Won;Lee Choong-Won;Ku Kun-Woo;Yoon Myung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.233-238
    • /
    • 2006
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, swirl flow hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured by using ultrasonic sensor technique in entire firing conditions. In this study, PMMA fuel and HTPB solid fuel were used in firing test.

  • PDF