DOI QR코드

DOI QR Code

Study on Weather Modification Hybrid Rocket Experimental Design and Application

기상조절용 하이브리드 로켓의 실험 설계 및 활용연구

  • Joo Wan Cha (Research Applications Department, National Institute of Meteorological Research) ;
  • Bu-Yo Kim (Research Applications Department, National Institute of Meteorological Research) ;
  • Miloslav Belorid (Research Applications Department, National Institute of Meteorological Research) ;
  • Yonghun Ro (Research Applications Department, National Institute of Meteorological Research) ;
  • A-Reum Ko (Research Applications Department, National Institute of Meteorological Research) ;
  • Sun Hee Kim (Aviation Meteorological Office) ;
  • Dong-Ho Park (Research Applications Department, National Institute of Meteorological Research) ;
  • Ji Man Park (Forecasting Department, Regional office of Busan Meteorology, Korean Meteorological Administration) ;
  • Hae Jung Koo (Research Applications Department, National Institute of Meteorological Research) ;
  • Ki-Ho Chang (Research Applications Department, National Institute of Meteorological Research) ;
  • Hong Hee Lee (Research Applications Department, National Institute of Meteorological Research) ;
  • Soojong Kim (Innospace Inc.)
  • 차주완 (국립기상과학원 기상응용연구) ;
  • 김부요 (국립기상과학원 기상응용연구) ;
  • ;
  • 노용훈 (국립기상과학원 기상응용연구) ;
  • 고아름 (국립기상과학원 기상응용연구) ;
  • 김선희 (항공기상청) ;
  • 박동오 (국립기상과학원 기상응용연구) ;
  • 박지만 (부산지방기상청) ;
  • 구해정 (국립기상과학원 기상응용연구) ;
  • 장기호 (국립기상과학원 기상응용연구) ;
  • 이용희 (국립기상과학원 기상응용연구) ;
  • 김수종 ((주)이노스페이스)
  • Received : 2023.11.21
  • Accepted : 2024.04.04
  • Published : 2024.05.31

Abstract

The National Institute of Meteorological Sciences in Korea has developed the Weather Modification Hybrid Rocket (WMHR), an advanced system that offers enhanced stability and cost-effectiveness over conventional solid-fuel rockets. Designed for precise operation, the WMHR enables accurate control over the ejection altitude of pyrotechnics by modulating the quantity of oxidizer, facilitating specific cloud seeding at various atmospheric layers. Furthermore, the rate of descent for pyrotechnic devices can be adjusted by modifying parachute sizes, allowing for controlled dispersion time and concentration of seeding agents. The rocket's configuration also supports adjustments in the pyrotechnic device's capacity, permitting tailored seeding agent deployment. This innovation reflects significant technical progression and collaborations with local manufacturers, in addition to efforts to secure testing sites and address hybrid rocket production challenges. Notable outcomes of this project include the creation of a national framework for weather modification technology utilizing hybrid rockets, enhanced cloud seeding methods, and the potential for broader meteorological application of hybrid rockets beyond precipitation augmentation. An illustrative case study confirmed the WMHR's operational effectiveness, although the impact on cloud seeding was limited by unfavorable weather conditions. This experience has provided valuable insights and affirmed the system's potential for varied uses, such as weather modification and deploying high-altitude meteorological sensors. Nevertheless, the expansion of civilian weather rocket experiments in Korea faces challenges due to inadequate infrastructure and regulatory limitations, underscoring the urgent need for advancements in these areas.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 기상조절 및 구름물리 연구(KMA2018-00224)의 지원을 받았습니다. 또한 기상조절용 하이브리드 로켓의 연소탄을 제작해 주신 (주) GBM과 로켓 실험에 협조해주신 한국항공우주연구원의 고흥항공센터에 감사드립니다.

References

  1. Brian, E., N. A. Favorito, and K. K. Kuo, 2006: Oxidizer-type and aluminum-particle addition effects on solidfuel burning behavior. 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, 4676, doi:10.2514/6.2006-4676.
  2. Bangsund, D. A., and F. L. Leistritz, 2019: Economic impacts of cloud seeding on agricultural crops in North Dakota. North Dakota Atmospheric Resource Board, 52 pp.
  3. Cha, J. W., and Coauthors, 2019: Analysis of results and technics about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 481-499, doi: 10.14191/Atmos.2019.29.4.481 (in Korean with English abstract).
  4. Cha, J. W., H. J. Koo, B. Y. Kim, M. Belorid, H. J. Hwang, M. H. Kim, K.-H. Chang, and Y. H. Lee, 2023: Analysis of rain drop size distribution to elucidate the precipitation process using a cloud microphysics conceptual model and in situ measurement. Asia-Pac. J. Atmos. Sci., 59, 257-269, doi:10.1007/s13143-022-00299-w.
  5. Dyer, J., E. Doran, Z. Dunn, K. Lohner, C. Bayart, A. Sadhwani, G. G. Zilliac, B. Cantwel, and A. Karabeyoglu, 2007: Design and Development of a 100 km Nitrous Oxide/Paraffin Hybrid Rocket Vehicle. Joint Propulsion Conference and Exhibit, 5362 pp.
  6. Gordon, S., and B. J. McBride, 1994: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. NASARP-1311, 64 pp [Available online at https://ntrs.nasa.gov/api/citations/19950013764/downloads/19950013764.pdf].
  7. Hong, J.-H., and J.-H. Hwang, 2006: Analysis on the change of regional vulnerability to flood. J. Environ. Policy, 5, 1-18 (in Korean with English abstract).
  8. Jung, W. S., K.-H. Chang, J. W. Cha, J. M. Ku, and C. K Lee, 2022: Estimation of available days for a cloud seeding experiment in Korea. J. Environ. Sci. Int., 31, 117-129, doi:10.5322/JESI.2022.31.2.117 (in Korean with English abstract).
  9. Kevin, L., J. Dyer, E. Doran, Z. Dunn, and G. Zilliac, 2006: Fuel regression rate characterization usinga laboratory scale nitrous oxide hybrid propulsion system. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 16 pp.
  10. Kim, B.-S., S.-J. Kim, H.-S. Kim, and H.-D. Jun, 2010: A impact assessment of climate and landuse change on water resources in the Han River. J. Korea Water Resour. Assoc., 43, 309-323, doi:10.3741/JKWRA.2010.43.3.309 (in Korean with English abstract).
  11. Kim, B.-Y., J.-W. Cha, W. Jung, and A.-R. Ko, 2020a: Precipitation enhancement experiments in catchment areas of dams: Evaluation of water resource augmentation and economic benefits. Remote Sens., 12, 3730, doi:10.3390/rs12223730.
  12. Kim, B.-Y., J.-W. Cha, A. R. Ko, W. S. Jung, and J. C. Ha, 2020b: Analysis of the occurrence frequency of seedable clouds on the Korean peninsula for precipitation enhancement experiments. Remote Sens., 12, 1487, doi:10.3390/rs12091487.
  13. Kim, H. C., S. J. Kim, J. P. Lee, G. H. Kim, H. J. Moon, H. G. Sung, and J. K. Kim, 2009: A local regression rate measurement technique for hybrid rocket fuel. Asia-Pac. Int. Symp. Aerospace Technol., 23-25.
  14. Kim, J. G., 2012: Development of combustion technology of the hybrid rocket propulsion systems. Bridging researcher program report of National Research Foundation of Korea, 163 pp (in Korean).
  15. Kim, S.-J., and Coauthors, 2008: Ground Firing Test Facility of Hybrid Rocket Engine. J. KSPE, 251-254 (in Korean with English abstract).
  16. Kim, S.-J., J.-T. Cho, G.-H. Kim, H.-C. Kim, K.-J. Woo, J.-P. Lee, H.-J. Moon, H.-G. Sung, and J.-K. Kim, 2009: Combustion characteristics of the paraffin-base hybrid rocket fuel. J. KSPE, 251-254 (in Korean).
  17. Koh, J. K., 2009: A study on vulnerability assessment to climate change in Gyeonggi-Do. Policy Research, 170 pp (in Korean).
  18. Lee, C. K., and Coauthors, 2010a: Estimation for the Economic Benefit of weather modification (Precipitation Enhance -ment and Fog Dissipation). Atmosphere, 20, 187-194 (in Korean with English abstract).
  19. Lee, J.-P., G.-H. Kim, S.-J. Kim, H.-C. Kim, H.-J. Moon, H.-G. Sung, and J.-K. Kim, 2010b: A study in combustion characteristic with the variation of oxidizer phase in hybrid rocket motor using PE/N2O. J. KSPE, 14, 46-53 (in Korean with English abstract).
  20. Marxman, G. A., C. E. Wooldridge, and R. J. Muzzy, 1964: Fundamentals of Hybrid Boundary Layer Combustion Progress in Astronautics and Aeronautics. 15th, AIAA, 485-522, doi:10.2514/5.9781600864896.0485.0522.
  21. Moon, K. H., J. S. Oh, S. J. Rhee, W. J. Choi, H. C. Kim, J. P. Lee, H. J. Moon, H. G. Sung, and J. K. Kim, 2012: Development of Hybrid Rocket (KHyRoc-II) with 1000 kgf Thrust level. 2012 KSPE spring conference. 58-62 (in Korean).
  22. Pokharel, B., B. Geerts, X. Jing, K. Friedrich, K. Ikeda, and R. Rasmussen, 2017: A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis. Atmos. Res., 183, 42-57, doi:10.1016/j.atmosres.2016.08.018.
  23. Ro, Y. H., K.-H. Chang, Y.-K. Lim, W. S. Jung, J. W. Kim, and Y. H. Lee, 2024: Analysis of available time of cloud seeding in South Korea using radar and rain gauge data during 2017-2022. J. Environ. Sci. Int., 33, 43-57, doi:10.5322/JESI.2024.33.1.43 (in Korean with English abstract).
  24. Schmierer, C., M. Kobald, K. Tomilin, U. Fischer, and S. Schlechtriem, 2019: Low cost small-satellite access to spaceusing hybrid rocket propulsion. Acta Astronautica, 159, 578-583. https://doi.org/10.1016/j.actaastro.2019.02.018
  25. Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE Project. Bull. Amer. Meteor. Soc., 100, 71-92, doi:10.1175/BAMS-D-17-0152.1.
  26. WMO, 2018: Peer Review Report on Global Precipitation Enhancement Activities. World Meteorological Organization, WWRP 2018-1, 129 pp.