• Title/Summary/Keyword: hybrid resource allocation

Search Result 43, Processing Time 0.033 seconds

A Priority-based Time Slot Allocation Protocol for Hybrid MAC in WSNs (WSN에서 하이브리드 MAC을 위한 우선순위기반 타임 슬롯 할당 프로토콜)

  • Nam, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1435-1440
    • /
    • 2014
  • Nodes in WSNs must operate under limited energy resource. Controlling access to the channel in WSNs plays a key role in determining channel utilization and energy consumption. This paper introduces a priority-based time slot allocation protocol for hybrid TDMA/CSMA MAC in WSNs. This protocol combines both TDMA and CSMA techniques while introducing prioritization by (m,k)-firm constraint. The performance of this protocol is obtained through simulations for various number of nodes and show significant improvements in delay and packet delivery ratio compared to S-MAC.

Efficient Resource Allocation Technique for LTE-Advanced based Interference Avoidance of Heterogeneous Network (LTE-Advanced 기반 이기종 네트워크 시스템의 간섭회피를 위한 효율적인 자원할당 기법)

  • Jang, Sung-Won;Seong, Hyeon-Kyeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.46-52
    • /
    • 2016
  • LTE-Advanced system consisting of the number of cells in the cellular environment because it is built to allow efficient use of limited frequency resources of adjacent cell interference avoidance should be considered. Transition services in accordance with the development of the mobile communication technology, wireless multimedia content from voice-centric mobile communications services and causing a lot of mobile data traffic, such as smart phones and tablet terminals spread of a data-driven surge in mobile data traffic base stations in urban areas by increasing became a reality that can not be prevented. In this paper, we propose a new Hybrid resource allocation technique for improving the performance of the cell boundary and analyzed the performance of the proposed new techniques to perform the simulation using LTE-Advanced system level simulator based on 19cell of cellular system model.

Research on Resource Allocation Method for a Hybrid WSD Based on Location Probability (위치확률 기반의 하이브리드 WSD 무선자원 할당 방안 연구)

  • Chang, Hyugnmin;Lee, Won-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.454-462
    • /
    • 2016
  • portable white space device(WSD) obeying the Korean regulations of TV white space(TVWS) can cause harmful interference to a digital TV receiver residing at the same pixel around the edge of the digital TV service coverage for the case with a changed propagation environment. In order to solve this problem, we propose a method to allocate the resource of a hybrid WSD based on TVWS geo-location DB with spectrum sensing. Using the received power of digital TV signal through the spectrum sensing, a hybrid WSD can calculate the maximum permitted EIRP based on location probability. Based on the accurate allocation method proposed in this paper, it is possible to satisfy the Korean TVWS regulations and to eliminate the harmful interference to TV receivers nearby the hybrid WSD.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).

Hybrid S-ALOHA/TDMA Protocol for LTE/LTE-A Networks with Coexistence of H2H and M2M Traffic

  • Sui, Nannan;Wang, Cong;Xie, Wei;Xu, Youyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.687-708
    • /
    • 2017
  • The machine-to-machine (M2M) communication is featured by tremendous number of devices, small data transmission, and large uplink to downlink traffic ratio. The massive access requests generated by M2M devices would result in the current medium access control (MAC) protocol in LTE/LTE-A networks suffering from physical random access channel (PRACH) overload, high signaling overhead, and resource underutilization. As such, fairness should be carefully considered when M2M traffic coexists with human-to-human (H2H) traffic. To tackle these problems, we propose an adaptive Slotted ALOHA (S-ALOHA) and time division multiple access (TDMA) hybrid protocol. In particular, the proposed hybrid protocol divides the reserved uplink resource blocks (RBs) in a transmission cycle into the S-ALOHA part for M2M traffic with small-size packets and the TDMA part for H2H traffic with large-size packets. Adaptive resource allocation and access class barring (ACB) are exploited and optimized to maximize the channel utility with fairness constraint. Moreover, an upper performance bound for the proposed hybrid protocol is provided by performing the system equilibrium analysis. Simulation results demonstrate that, compared with pure S-ALOHA and pure TDMA protocol under a target fairness constraint of 0.9, our proposed hybrid protocol can improve the capacity by at least 9.44% when ${\lambda}_1:{\lambda}_2=1:1$and by at least 20.53% when ${\lambda}_1:{\lambda}_2=10:1$, where ${\lambda}_1,{\lambda}_2$ are traffic arrival rates of M2M and H2H traffic, respectively.

Database Program for Managing Management Resources: General Contractor's Perspectives

  • Yong-Woo Kim;Sungwon Shin
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1100-1106
    • /
    • 2009
  • General contractors' overhead costs are increasing relative to direct costs. However, it is difficult to apply the traditional activity-based costing directly to the construction site overhead costing because the resource consumption rate per each activity is varied depending on the attributes of activities. The research develops a methodology of hybrid cost allocation system when resources are assigned to cost objects unlike the traditional activity-based costing. The study also develops a database program and demonstrates how it can be applied to the construction projects using a case study.

  • PDF

Joint Mode Selection and Resource Allocation for Mobile Relay-Aided Device-to-Device Communication

  • Tang, Rui;Zhao, Jihong;Qu, Hua;Zhu, Zhengcang;Zhang, Yanpeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.950-975
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying cellular networks is a promising add-on component for future radio communication systems. It provides more access opportunities for local device pairs and enhances system throughput (ST), especially when mobile relays (MR) are further enabled to facilitate D2D links when the channel condition of their desired links is unfavorable. However, mutual interference is inevitable due to spectral reuse, and moreover, selecting a suitable transmission mode to benefit the correlated resource allocation (RA) is another difficult problem. We aim to optimize ST of the hybrid system via joint consideration of mode selection (MS) and RA, which includes admission control (AC), power control (PC), channel assignment (CA) and relay selection (RS). However, the original problem is generally NP-hard; therefore, we decompose it into two parts where a hierarchical structure exists: (i) PC is mode-dependent, but its optimality can be perfectly addressed for any given mode with additional AC design to achieve individual quality-of-service requirements. (ii) Based on that optimality, the joint design of MS, CA and RS can be viewed from the graph perspective and transferred into the maximum weighted independent set problem, which is then approximated by our greedy algorithm in polynomial-time. Thanks to the numerical results, we elucidate the efficacy of our mechanism and observe a resulting gain in MR-aided D2D communication.

Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning

  • Sun, Si-yuan;Zheng, Ying;Zhou, Jun-hua;Weng, Jiu-xing;Wei, Yi-fei;Wang, Xiao-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2496-2512
    • /
    • 2021
  • The requirements for powerful computing capability, high capacity, low latency and low energy consumption of emerging services, pose severe challenges to the fifth-generation (5G) network. As a promising paradigm, mobile edge networks can provide services in proximity to users by deploying computing components and cache at the edge, which can effectively decrease service delay. However, the coexistence of heterogeneous services and the sharing of limited resources lead to the competition between various services for multiple resources. This paper considers two typical heterogeneous services: computing services and content delivery services, in order to properly configure resources, it is crucial to develop an effective offloading and caching strategies. Considering the high energy consumption of 5G base stations, this paper considers the hybrid energy supply model of traditional power grid and green energy. Therefore, it is necessary to design a reasonable association mechanism which can allocate more service load to base stations rich in green energy to improve the utilization of green energy. This paper formed the joint optimization problem of computing offloading, caching and resource allocation for heterogeneous services with the objective of minimizing the on-grid power consumption under the constraints of limited resources and QoS guarantee. Since the joint optimization problem is a mixed integer nonlinear programming problem that is impossible to solve, this paper uses deep reinforcement learning method to learn the optimal strategy through a lot of training. Extensive simulation experiments show that compared with other schemes, the proposed scheme can allocate resources to heterogeneous service according to the green energy distribution which can effectively reduce the traditional energy consumption.

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

Analysis of the Impact of Initial Carbon Emission Permits Allocation on Economic Growth (초기 탄소배출권 배분이 경제성장에 미치는 영향 분석)

  • Park, Sunyoung;Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.167-198
    • /
    • 2011
  • The Korean government recently announced greenhouse gases (GHG) emissions reduction target as 30% of 2020 business as usual (BAU) emission projection. As carbon emissions trading is widely used to achieve reductions in the emissions of pollutants, this study deals with the sectoral allocation of initial carbon emission permits in Korea. This research tests the effectiveness of a variety of allocation rules based on the bankruptcy problem in cooperative game theory and hybrid input-output tables which combines environmental statistics with input-output tables. The impact of initial emission permits allocation on economic growth is also analyzed through green growth accounting. According to the analysis result, annual GDP growth rate of Korea is expected to be 4.03%, 4.23%, and 3.67% under Proportional, Constrained Equal Awards, and Constrained Equal Losses rules, respectively. These rates are approximately from 0.69% points to 0.13% points lower than the growth rate of 4.36% without compulsory $CO_2$ reduction. Thus, CEA rule is the most favorable in terms of GDP growth. This study confirms the importance of industry level study on the carbon reduction plan and initial carbon emission permits should reflect the characteristic of each industry.

  • PDF