• Title/Summary/Keyword: hybrid power source

Search Result 272, Processing Time 0.055 seconds

Development of Generator Excitation System with Main/Standby Controller in In-chun Thermal power plant #4 (인천화력 4호기 발전기용 주/부 제어기를 갖는 정지형 여자시스템 개발)

  • 류호선;임익헌
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.407-410
    • /
    • 1999
  • Potential-source controlled excitation system had been developed for synchronous generator in In-Chun thermal power plant #4 by KEPRI. This paper describes the characteristics of Main/Standby control system employed analog, digital circuit devices (hybrid type) and 3 PCRs(Phase Controlled Rectifier)

  • PDF

Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source

  • Dang, Tri Dung;Do, Tri Cuong;Truong, Hoai Vu Anh;Ho, Cong Minh;Dao, Hoang Vu;Xiao, Yu Ying;Jeong, EunJin;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • The objective of this study was to design and model the PEM fuel cell excavator with supercapacitor/battery hybrid power source to increase efficiency as well as eliminate greenhouse gas emission. With this configuration, the system can get rid of the internal combustion engine, which has a low efficiency and high emission. For the analysis and simulation, the governing equations of the PEM system, the supercapacitor and battery were derived. These simulations were performed in MATLAB/Simulink environment. The hydraulic modeling of the excavator was also presented, and its model implemented in AMESim and studied. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software. The simulation results were presented to show the performance of the system.

A Study on the Hybrid Propulsion System for Fishing Boat (어선용 하이브리드 추진시스템에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Park, Choung-Hwan;Ham, Youn-Jae;Kwak, Jun-Ho;Lee, Ji-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.677-683
    • /
    • 2008
  • The electric propulsion system us closely related with the economical efficiency of ship operation. Fuel efficiency is mainly decided by propulsion system such as diesel engine, propulsion motor and steam turbine. The hybrid propulsion system for fishing boat consists of diesel engine and battery as propulsion power source. This paper is to design battery capacity according to power consumption with ship operation condition, and to test the power consumption of model ship in the circulating water channel. As a result. it can be known that the optimum ship operation condition affects the fuel efficiency.

A New Control Method of Series Single-Phase Hybrid Active Power Filter (직렬형 단상 하이브리드 능동 전력필터의 새로운 제어법)

  • Kim, Jin-Sun;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.149-151
    • /
    • 2005
  • This paper deals with the novel control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active power filters. To construct two-axes coordinate, an imaginary second phase was made by giving time delay to line current. In this proposed method, the new signal, which was the delayed through the filtering by the phase-delay property of low-pass filter, is used as the secondary phase. Because two phases have different phase, instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying gain of filter by compensation current using the rotating reference frames that synchronizes with source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames. This paper shows the experimental results, which provide a high accuracy and extremely fast response of single-phase hybrid active Bower filter under the operation with the proposed control method.

  • PDF

Design of the Robust Hybrid Controller for Three-Phase Four-Leg Voltage Source Inverter under the Unbalance Load (불평형 부하에서 강인한 3상4족 전압형 인버터를 위한 하이브리드 제어기의 설계)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.291-292
    • /
    • 2014
  • The three-phase four-leg voltage source inverter (VSI) topology can be an interesting option for the three phase-four wire system. With an additional leg, this topology can achieve superior performance with unbalanced and/or nonlinear load. This paper proposes a new hybrid controller which combines PI controller and resonant controller in synchronous frame for three phase four leg inverter. The hybrid controller is simple in structure and easy to implement. The performance of proposed controller is verified by the experiments and compared with that of the conventional PI controller.

  • PDF

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (수용가 직류 서비스를 위한 무접점 전원장치)

  • Chung, Bong-Geun;Kang, Sung-In;Kim, Yoon-Ho;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.174-182
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contactless power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap

  • Arzhannikov, Andrey V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Bedenko, Sergey V.;Prikhodko, Vadim V.;Lutsik, Igor O.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2460-2470
    • /
    • 2020
  • To study the thermophysical and neutronic properties of thorium-plutonium fuel, a conceptual design of a hybrid facility consisting of a subcritical Th-Pu reactor core and a source of additional D-D neutrons that places on the axis of the core is proposed. The source of such neutrons is a column of high-temperature plasma held in a long magnetic trap for D-D fusionreactions. This article presents computer simulation results of generation of thermonuclear neutrons in the plasma, facility neutronic properties and the evolution of a fuel nuclide composition in the reactor core. Simulations were performed for an axis-symmetric radially profiled reactor core consisting of zones with various nuclear fuel composition. Such reactor core containing a continuously operating stationary D-D neutron source with a yield intensity of Y = 2 × 1016 neutrons per second can operate as a nuclear hybrid system at its effective coefficient of neutron multiplication 0.95-0.99. Options are proposed for optimizing plasma parameters to increase the neutron yield in order to compensate the effective multiplication factor decreasing and plant power in a long operating cycle (3000-day duration). The obtained simulation results demonstrate the possibility of organizing the stable operation of the proposed hybrid 'fusion-fission' facility.

A Performance Comparison of Excitation Strategies For a Low Noise SRM Drive

  • Lee Dong-Hee;Kim Tae-Hyoung;Ahn Jin-Woo
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.218-223
    • /
    • 2005
  • A simple construction, low cost, and a fault tolerant power electronic drive have made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive exhibits higher levels of vibration and acoustic noise than most competing drives. The main source of vibration in the switched reluctance drive is generated by the rapid change of radial magnetic force when the phase current is extinguished during commutation. In this paper, some excitation methods are proposed to reduce the vibration and acoustic noise of the switched reluctance drive. The excitation strategies considered in this research are 1-phase, 2-phase and hybrid excitation methods. The 1-phase method is the conventional approach, while in the 2-phase method, the two phases are excited simultaneously. The hybrid excitation has 2-phase excitation using a long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are compared and tested. The suggested 2-phase and hybrid strategies reduce acoustic noise because the schemes reduce the abrupt change in excitation level by using distributed and balanced excitation.