• Title/Summary/Keyword: hybrid plate

Search Result 358, Processing Time 0.026 seconds

Simulation Study on the Optimization of Hybrid Light Guide Plates for Edge-lit Backlight Applications

  • Lee, Jeong-Ho;Nahm, Kie-Bong;Ko, Jae-Hyeon;Kim, Joong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.693-696
    • /
    • 2009
  • The ray-tracing technique was used to optimize the light guide plate for the purpose of improving the on-axis luminance on the edge-lit backlights. One-dimensional prisms and engraved V-shaped patterns were applied to the upper and the lower surfaces of the light guide plate, respectively. By optimizing the apex angles of these micro-structures, as well as the shape of the reverseprism film put over the light guide plate, highly-collimated light-output distribution could be obtained on the backlight, which may contribute to the development of mobile LCD's with low power consumption.

  • PDF

A study on fatigue life of aluminum plate reinforced with FRP in aircraft structure (항공기 구조물에서 FRP를 이용한 보강부재의 피로수명에 대한 연구)

  • 박원조;허정원;이광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.69-75
    • /
    • 1997
  • A A12024-T3 plate has been reinforced with AFRP to be a Hybrid-Composite, APAL. The fatigue life of the APAL has been investigated. The effects of bonding surface, numbers of AFRP bonded and AFRP orientation on fatigue life have been compared with A12024-T3 plate. Fatigue life of APAL has been remarkedly increased compared with that of A12024-T3 plate. The fatigue life has depended on bonding surface and AFRP orientation, but no relationship could be found with numbers of AFRP laminates.

  • PDF

A Study on the Energy Saving Hydraulic System Using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구)

  • Cho, Y.R.;Yoon, J.I.;Yoon, J.H.;Lee, M.S.;Jo, W.K.;Yoon, H.S.;Ahn, K.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구)

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yoon, Ju-Hyeon;Lee, Min-Su;Jo, Woo-Keon;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

An Experimental Study on the Energy Saving Hydraulic Control System Using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 제어 시스템에 관한 실험적 연구)

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Kim, Jung-Soo;Yoon, Ju-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.68-76
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam According to Reinforcement Amounts (인장철근배근량에 따른 U-플랜지 트러스 복합보의 휨 내력에 관한 실험연구)

  • Oh, Myoung Ho;Park, Sung Jin;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.33-40
    • /
    • 2021
  • For the practical application of U-flanged Truss Hybrid beams, the flexural capacity of hybrid beams with end reinforcement details using vertical steel plates was verified. The bending test of U-flanged Truss Hybrid beams was performed using the same top chord under the compressive force, but with the thickness of the bottom plate and the amount of tensile reinforcement. The initial stiffness and maximum load of the specimen with tensile reinforcement have a higher value than that of the specimen without tension reinforcement, but the more tensile reinforcement, the greater the load decrease after the maximum load. In the case of the specimen with tensile reinforcement, because the test result value is 76% to 88% when compared with the flexural strength according to Korea Design Code, the safety of the U-flanged Truss Hybrid beam with the same details of the specimens can't ensure. Therefore, the development of new details is required to ensure that the bottom steel plate and the tensile reinforcement can undergo sufficient tensile deformation.

A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module (배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구)

  • Lee, Seung-Chan;Ha, Sung Kyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, in order to improve the quality issue and component characteristics of the battery module, which is one of the major parts of the electric vehicle. The structure is reinforced by using the composite material and the mechanism structure optimization of Hybrid concept which can overcome the disadvantages of single material was performed and the performance was compared. For this purpose, figure out the main design variables of composite materials according to Classical Laminated Plate Theory (CLPT) and the algorithm for predicting composite material properties have been studied. Based on the mechanical properties of the designed composite materials, finite element analysis (FEM) and the performance of the battery module was verified. Consequently, according to the verification result, Hybrid Battery Module reinforced with Selective Composite Patch can reduce the weight by 30% and reduce the product thickness by 32.5% compared with the existing Al battery module and proved the merit of Hybrid structure such as maintaining impact performance.

A new method to detect cracks in plate-like structures with though-thickness cracks

  • Xiang, Jiawei;Nackenhorst, Udo;Wang, Yanxue;Jiang, Yongying;Gao, Haifeng;He, Yumin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.397-418
    • /
    • 2014
  • In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)

  • Belkhodja, Y.;Ouinas, D.;Fekirini, H.;Olay, J.A. Vina;Achour, B.;Touahmia, M.;Boukendakdji, M.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.395-420
    • /
    • 2022
  • A new hybrid quasi-3D and 2D high-order shear deformation theory is studied in this mathematical formulation, for an investigation of the bending, free vibrations and buckling influences on a functionally graded material plate. The theoretical formulation has been begun by a displacement field of five unknowns, governing the transverse displacement across the thickness of the plate by bending, shearing and stretching. The transverse shear deformation effect has been taken into consideration, satisfying the stress-free boundary conditions, especially on plate free surfaces as parabolic variation through its thickness. Thus, the mechanical properties of the functionally graded plate vary across the plate thickness, following three distributions forms: the power law, exponential form and the Mori-Tanaka scheme. The mechanical properties are used to develop the equations of motion, obtained from the Hamilton principle, and solved by applying the Navier-type solution for simply supported boundary conditions. The results obtained are compared with other solutions of 2D, 3D and quasi-3D plate theories have been found in the literature.