• Title/Summary/Keyword: hybrid organic materials

Search Result 290, Processing Time 0.029 seconds

Preparation and Characterization of Hybrid Silica-Poly(ethylene glycol) Sonogel

  • Jung, Hwa-Young;Gupta, Ravindra K.;Seo, Dong-Won;Kim, Yoo-Hang;Whang, Chin-Myung
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.884-890
    • /
    • 2002
  • An inorganic-organic hybrid system, silica-poly(ethylene glycol) songel is reported. This system was prepared via sol-gel method by varying varous processing variables. e.g. ultrasonic radiation time, gelling temperanture, PEG content and its molecular weight. Various experimental techniques wee employed to analyze the morphological, mechanical and optical properties of the system. The results were discussed in the light of existing theories. The sonogel system exhibited the common features of inorganic-organic hybrids. $SiO_2-10$ wt% PEG sonogel exhibited the morphological and optical properties superior to those reported earlier for the classic gels and found suitable for device applications.

LC Orientation Characteristics Treated on Organic Hybrid Overcoat Layer with Ion Beam Irradiation

  • Lee, Sang-Keuk;Kim, Byoung-Yong;Kim, Young-Hwan;Lee, Kang-Min;Oh, Byeong-Yun;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.202-205
    • /
    • 2008
  • We have studied the liquid crystal (LC) orientation behavior on the organic hybrid overcoat layer with ion beam irradiation. Excellent LC alignments of the nematic liquid crystal (NLC) on the ion beam irradiated organic hybrid overcoat layers were observed in various intensities above 600 eV. Pretilt angles of the NLC on the organic hybrid overcoat layers for all ion beam energy intensities were observed from 0.2 to 0.5 degrees. Also, we used the atomic force microscopy (AFM) images for measuring the roughness of the organic hybrid overcoat layers with ion beam irradiation before and after. The surface of organic hybrid overcoat layers was leveled off by the ion beam irradiation. Finally, a good LC alignment thermal stability on the organic hybrid overcoat layer with ion beam irradiation can be achieved.

Synthesis and Luminescence Preparation of Organic/Inorganic Polymer Hybrid from Novolac Derivatives

  • Konishi, Gen-ichi;Kimura, Tsuyoshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.316-316
    • /
    • 2006
  • The preparation of an organic/inorganic polymer hybrid from a novolac derivatives is described. The hybrid was prepared by the acid-catalyzed solgel reaction of phenyl-trimethoxysilane (PhTMOS) in the presence of anisole novolac. The resulting film was transparent and showed a high heat stability. The dispersion of two components might be due to the utilization of the p-p interaction between the phenyl ring of the silica matrix and that of novolac. This makes it possible to prepare a hybrid glass having a highly content of novolac derivatives.

  • PDF

Preparation and Properties of Inorganic-organic Hybrid $Li^+$ Ion Conductor by Sol-gel Process

  • Nishio, Keishi;Miyazawa, Tsutomu;Watanabe, Yuichi;Tsuchiya, Toshio
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Inorganic-organic hybrid Li$^+$ ion conductors were prepared by the sol-gel process. Tetramethyl orthosilicate (TMOS), polyethylene glycol 200 (PEG$_200$) and lithium bis (trifluoro-methylsulfony) imide were used as raw materials and $H_2O$ was used as a solvent. Hybrid Li$^+$ ion conductor prepared by the sol-gel process showed very high ion conductivities of log${\sigma}_R.T$(S/cm)=-3.73, log${\sigma}_60$(S/cm)=-3.00 at room temperature and $60^{\circ}C$, respectivery. Decomposition voltage was 3.1 V.

  • PDF

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Organic / inorganic composite membrane for Polymer Electrolyte Membrane Fuel Cell (고분자전해질 연료전지용 유기/무기 복합 전해질)

  • Choi Seong Ho;Hong Hyeon Sil;Lee Heung Chan;Kim Yu Mi;Kim Geon
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.169-171
    • /
    • 2003
  • Organic/inorganic hybrid membranes have been prepared and evaluated as polymer electrolytes in a polymer electrolyte membrane fuel cell (PEMFC). Previously, partially fluorinated poly (arylenether) was synthesized and the polymer was sulfonated by fuming sulfuric acid$(30\%\;SO_3)$. Modification of these polymers with coupling agent and inorganic materials was carried out to prepare membranes. Membranes cast from these materials were investigated in relation to the proton conductivity and weight loss at the room temperature. It was found that these membranes had a higher conductivity of $10^{-2}\;Scm^{-1}$ at the room temperature. But inorganic materials have leaked out from the hybrid membrane. If this problem is resolved, organic/inorganic hybrid membranes will become satisfactory Polymer electrolytes for the PEMFC.

  • PDF

Development of Organic-Inorganic Hybrid Insulating Materials with Semi-Non-Combustible Using by Recycling Gypsum (재활용 석고 부산물을 이용한 준불연 유무기 융합 단열재 개발 연구)

  • Ha, Joo-Yeon;Shin, Hyun-Gyoo;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.431-437
    • /
    • 2019
  • The purpose of this study is to develop an organic-inorganic hybrid insulation materials which has an economic feasibility of organic level and excellent adiabatic performance and fire stability by impregnating organic materials with inorganic binder solutions. The organic base was commercial polyurethane sponge, and the inorganic binder slurry was prepared by mixing water and additives into recycled gypsum byproducts. As a result of evaluation of the developed materials, it was confirmed that it not only has excellent insulation performance of a thermal conductivity of 0.051 W/mK or less but also it is a semi-non-combustible materials specified in the Ministry of Land, Infrastructure and Transport Notice No. 2015-744. The developed materials can also be controlled for thermal conductivity and flame retardance according to density control during manufacturing process, and thus it can be applied to various insulation materials.

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.