• Title/Summary/Keyword: hybrid optimization method

Search Result 381, Processing Time 0.029 seconds

Comparative Study on Proposed Simulation Based Optimization Methods for Dynamic Load Model Parameter Estimation (동적 부하모델 파라미터 추정을 위한 시뮬레이션 기반 최적화 기법 비교 연구)

  • Del Castillo, Manuelito Jr.;Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.187-188
    • /
    • 2011
  • This paper proposes the hybrid Complex-PSO algorithm based on the complex search method and particle swarm optimization (PSO) for unconstrained optimization. This hybridization intends to produce faster and more accurate convergence to the optimum value. These hybrid will concentrate on determining the dynamic load model parameters, the ZIP model and induction motor model parameters. Measurement-based parameter estimation, which employs measurement data to derive load model parameters, is used. The theoretical foundation of the measurement-based approach is system identification. The main objective of this paper is to demonstrate how the standard particle swarm optimization and complex method can be improved through hybridization of the two methods and the results will be compared with that of their original forms.

  • PDF

Optimal design of hybrid laminated composite plates (혼합 적층 복합 재료판의 최적설계)

  • 이영신;이열화;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1391-1407
    • /
    • 1990
  • In this paper, optimization procedures are presented considering the static and dynamic constraints for laminated composite plate and hybrid laminated composite plate subject to concentrated load on center of the plates. Design variables for this problem are ply angle or ply thickness. Deflection, natural frequency and specific damping capacity are considered as constraints. Using a recursive linear programming method, the nonlinear optimization problems are solved. By introducing the design scaling factor, the number of iterations is reduced significantly. Composite plates could be designed optimally combined with FEM analysis under various conditions. In the optimization procedure, verification for both analysis and design of the laminated composite plates are compared with the results of the others. Various design results are presented for the laminated composite plates and hybrid laminated composite plates.

An Improvement of Particle Swarm Optimization with A Neighborhood Search Algorithm

  • Yano, Fumihiko;Shohdohji, Tsutomu;Toyoda, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • J. Kennedy and R. Eberhart first introduced the concept called as Particle Swarm Optimization (PSO). They applied it to optimize continuous nonlinear functions and demonstrated the effectiveness of the algorithm. Since then a considerable number of researchers have attempted to apply this concept to a variety of optimization problems and obtained reasonable results. In PSO, individuals communicate and exchange simple information with each other. The information among individuals is communicated in the swarm and the information between individuals and their swarm is also shared. Finally, the swarm approaches the optimal behavior. It is reported that reasonable approximate solutions of various types of test functions are obtained by employing PSO. However, if more precise solutions are required, additional algorithms and/or hybrid algorithms would be necessary. For example, the heading vector of the swarm can be slightly adjusted under some conditions. In this paper, we propose a hybrid algorithm to obtain more precise solutions. In the algorithm, when a better solution in the swarm is found, the neighborhood of a certain distance from the solution is searched. Then, the algorithm returns to the original PSO search. By this hybrid method, we can obtain considerably better solutions in less iterations than by the standard PSO method.

Optimization of 3G Mobile Network Design Using a Hybrid Search Strategy

  • Wu Yufei;Pierre Samuel
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.471-477
    • /
    • 2005
  • This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a post­optimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

Development of an Enhanced Artificial Life Optimization Algorithm and Optimum Design of Short Journal Bearings (향상된 인공생명 최적화 알고리듬의 개발과 소폭 저널 베어링의 최적설계)

  • Yang, Bo-Suk;Song, Jin-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.478-487
    • /
    • 2002
  • This paper presents a hybrid method to compute the solutions of an optimization Problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The artificial life algorithm has the most important feature called emergence. The emergence is the result of dynamic interaction among the individuals consisting of the system and is not found in an individual. The conventional artificial life algorithm for optimization is a stochastic searching algorithm using the feature of artificial life. Emergent colonies appear at the optimum locations in an artificial ecology. And the locations are the optimum solutions. We combined the feature of random-tabu search method with the conventional algorithm. The feature of random-tabu search method is to divide any given region into sub-regions. The enhanced artificial life algorithm (EALA) not only converge faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The enhanced artificial life algorithm is applied to the optimum design of high-speed, short journal bearings and its usefulness is verified through an optimization problem.

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization

  • Mahmoudi, Sayyed Mostafa;Rad, Milad Mansouri;Ochbelagh, Dariush Rezaei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3665-3674
    • /
    • 2021
  • One of the important parts of the in-core fuel management is loading pattern optimization (LPO). The loading pattern optimization as a reasonable design of the in-core fuel management can improve both economic and safe aspects of the nuclear reactor. This work proposes the hybrid of fuzzy logic controller with harmony search algorithm (HS) for loading pattern optimization in a pressurized water reactor. The music improvisation process to find a pleasing harmony is inspiring the harmony search algorithm. In this work, the adjustment of the harmony search algorithm parameters such as the bandwidth and the pitch adjustment rate are increasing performance of the proposed algorithm which is done through a fuzzy logic controller. Hence, membership functions and fuzzy rules are designed to improve the performance of the HS algorithm and achieve optimal results. The objective of the method is finding an optimum core arrangement according to safety and economic aspects such as reduction of power peaking factor (PPF) and increase of effective multiplication factor (Keff). The proposed approach effectiveness has been tried in two cases, Michalewicz's bivariate function problem and NEACRP LWR core. The results show that by using fuzzy harmony search algorithm the value of the fitness function is improved by 15.35%. Finally, with regard to the new solutions proposed in this research it could be used as a trustworthy method for other optimization issues of engineering field.