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Abstract. J. Kennedy and R. Eberhart first introduced the concept called as Particle Swarm Optimization (PSO). 
They applied it to optimize continuous nonlinear functions and demonstrated the effectiveness of the algorithm. 
Since then a considerable number of researchers have attempted to apply this concept to a variety of optimization 
problems and obtained reasonable results. In PSO, individuals communicate and exchange simple information 
with each other. The information among individuals is communicated in the swarm and the information between 
individuals and their swarm is also shared. Finally, the swarm approaches the optimal behavior. It is reported that 
reasonable approximate solutions of various types of test functions are obtained by employing PSO. However, if 
more precise solutions are required, additional algorithms and/or hybrid algorithms would be necessary. For 
example, the heading vector of the swarm can be slightly adjusted under some conditions. In this paper, we 
propose a hybrid algorithm to obtain more precise solutions. In the algorithm, when a better solution in the 
swarm is found, the neighborhood of a certain distance from the solution is searched. Then, the algorithm returns 
to the original PSO search. By this hybrid method, we can obtain considerably better solutions in less iterations 
than by the standard PSO method. 
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1.  INTRODUCTION 

In the last few decades, meta-heuristics on the basis 
of life evolution and swarm intelligence have been 
widely researched. They have been applied to various 
optimization problems and effective solutions were ob-
tained for certain problems. For example, genetic algorithm 
(GA), evolutionary programming (EP), and simulated 
annealing (SA) are applied instead of strict optimization 
methods for the optimization of complex systems. Re-
cently, as a meta-heuristic method, swarm intelligence 
has been applied to various optimization problems. Even 
though each individual in a swarm has low intelligence, 
the swarm often exhibits high performance with respect 
to its ability as well as intensive united behavior. This 
concept of particle swarm optimization (PSO) was first 

developed and applied to an optimization problem by J. 
Kennedy and R. Eberhart (Kennedy et al., 1995). PSO is 
derived primarily from the two main component metho-
dologies; artificial life in swarm, and swarming theory 
in particular. Since then, many researchers have att-
emped to apply this concept to a variety of optimization 
problems and they have obtained reasonable results. 

In PSO, individuals communicate and exchange 
simple information with each other. The information 
among individuals is communicated in the swarm and 
the information between individuals and their swarm is 
also shared. Finally, the swarm approaches to the opti-
mal behavior. PSO utilizes the properties that the indi-
viduals exhibit simple behaviors with simple informa-
tion and the swarm, as an aggregate of individuals, 
exhibit optimal movement for integrated highly intelli-
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gent information. 
Many scientists have attempted to simulate bird 

flocking and fish schooling behaviors on computers for 
a long time. C. W. Reynolds was particularly interested 
in the beauty of bird flocking behavior (Reynolds, 1987). 
F. Heppner and U. Grenander attempted to determine 
the rules of this behavior of bird flocking (Heppner et al., 
1990). They simulated it by maintaining an optimal dis-
tance between a bird and its neighbors and obtained very 
good results. It is possible that this rule can be applied to 
animal social behavior. E. O. Wilson stated in the article, 
“In theory at least, individual members of the school can 
profit from the discoveries and previous experience of 
all other members of the school during the search for 
food. This advantage can become decisive, outweighing 
the disadvantage of competition for food items, when-
ever the resource is unpredictably distributed in patches” 
(Wilson, 1975). In other words, social information be-
tween members offers an evolutionary advantage. This 
hypothesis forms the basis of PSO. In 1995, J. Kennedy 
and R. C. Eberhart proposed PSO using the ideas of bird 
flocking behavior described above (Kennedy et al., 
1995). 

Further, some researchers compared PSO with ge-
netic algorithms and reported good results. Since PSO 
has not gained popularity, its properties have not yet 
been fully elucidated. In this paper, we propose a hybrid 
algorithm to find more precise solutions in less itera-
tions. In this algorithm, when a better solution for the 
swarm is obtained, the neighborhood of a certain dis-
tance from the solution is searched. The algorithm then 
returns to the original PSO search. By this hybrid 
method, we can obtain considerably better solutions 
than by the standard PSO in less iterations. 

2. EVOLUTION OF PSO 

PSO is slightly different from existing meta-heuri-
stic algorithms. It was developed on the basis of social 
behaviors of animals and plants, and physical phenom-
ena; however, it is associated with evolutionary compu-
tation as well as associates with GAs and EP. 

In this section, the original PSO method is outlined, 
which was proposed by Kennedy and Everhart (Kennedy 
et al., 1995). The algorithm evolutionarily approaches to 
the optima in a step by step manner. 

 
First, we define symbols and notations. 

Pi,j present position (j-th iteration) of member i in the 
swarm, 

Pi,j vector from the origin to position Pi,j, 
Vi,j objective value at the present position Pi,j, 
Qi position that yields the best objective value de-

termined by member i until the j-th iteration, 
Qi vector from the origin to position Qi, 
Ui objective value at Qi (best objective value of 

member i), 

B position that yields the best objective value de-
termined by whole members of the swarm until 
the j-th iteration, 

B vector from the origin to position B, 
F objective value at B (best objective value of the 

swarm), 
Ti,j transfer vector of member i at the j-th iteration, 

and 
ch random number distributed uniformly between 0 

and 1 (distance weight where h = 1, 2). 
 
At the beginning of the algorithm, each member in 

the swarm is placed randomly in the search domain. The 
transfer vector of member i at j+1-th iteration, Ti,j+1, is 
calculated as follows (refer to Figure 1): 

Ti,j+1 = Ti,j + 2c1(Qi - Pi,j) + 2c2(B - Pi,j)     (1) 

Then, 

Pi,j+1= Pi,j + Ti,j+1 

If Vi,j+1 is better than Ui, Ui ¬ Vi,j+1, Qi ¬ Pi,j+1. 

If Ui is better than F, F ¬ Ui , B ¬ Qi. 
 

In the article, several alternative transfer vectors 
were defined and tested on benchmark problems: it was 
reported that transfer vector (1) yielded the best results. 
Later, many researchers showed that equation (1) 
yielded reasonable results (Kennedy et al., 1995). 
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Figure 1. Positions and vectors on a two dimensional X-Y 

plane 

3. MOOT POINTS OF ORIGINAL PSO AND 
IMPROVEMENTS 

The following modified transfer vector has fre-
quently been used in recent researches instead of (1), 
because it usually yields better solutions (Kennedy et al., 
2001). 

 
Ti,j+1 = wTi,j + 2c1(Qi - Pi,j) + 2c2(B - Pi,j) 

If ½Ti,j+1½ > ½v½ then ½Ti,j+1½ ¬ ½v½        (2) 
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where 
v : maximum transfer vector 
w : decrement weight 

 
Occasionally, Pi,j+1 moves out of the search domain, 

D. This case was not considered in the original PSO. 
Although the optimal solution is unknown, it is desirable 
that the pulling back point is placed near the optimal 
solution. Pi,j+1 should be inside D. Therefore, if Pi,j+1 
moves outside D, we must define an operation in PSO to 
pull back Pi,j+1 into D. 

We have already introduced three types of the pull-
ing back methods (Toyoda et al., 2004; Yano et al., 
2004). 

 
1) Pi,j+1 is pulled back to the nearest point from the pre-

sent Pi,j+1 in D, 
2) Pi,j+1 is pulled back to the nearest point where it 

moves outside of D. 
3) Pi,j+1 is placed randomly in D. 

 
Generally, the position of the optimal solution is un-

known. If these methods are dynamically mixed with 
PSO, we can certainly obtain a more effective method 
even though the optimal solution can exist at any point. 
In this paper, we introduce the following approach to 
PSO. 

If Pi,j+1 moves outside of the search domain D, Pi,j+1 

is replaced as follows: 
 

a) generally, Pi,j+1 is replaced randomly in D. 
b) sometimes, Pi,j+1 is pulled back to the nearest point 

where it moves outside of D. 
 

These two steps are switched by a certain probability. 
The transfer vector Ti,j+1 is recalculated by the new 

Pi,j+1 as follows: 
 

Ti,j+1= Pi,j+1 - Pi,j 

4. NEIGHBORHOOD SEARCH ROUTINE 

The length of the transfer vector affects accuracy of 
the solutions and the computation time. If it is large, 
broad area within the search domain can be searched in 
a short computation time; however, a detailed search 
cannot be carried out. On the contrary, if it is small, it is 
possible to search in a small area; however, a longer 
computation time is required to search the entire search 
domain. 

It is very reasonable to assume that when a good 
solution is found, it is quite within the bounds of possi-
bility that there exist better solutions in its neighborhood. 

In this section, we propose a neighborhood search 
routine and incorporate it in PSO. First, symbols are 
defined as follows: 

 

P’i,j,e search point at the e-th iteration in the 
neighborhood search routine, where e = 0, 1, 
2, … 

P”i,j,e search point that yields the best solution among 
all the search points at the e-th iteration, where 
P”i,j,0 = Pi,j, 

T’i,j,e+1 transfer vector from P ”i,j,e to P’i,j,e+1, where 
T ’i,j,e+1 = ((-1)r1d, (-1)r2d, …, (-1)rnd), rk = 0 or 
1, and k = 1, 2, …, n), 

T ”i,j,e+1 transfer vector from P”i,j,e to P”i,j,e+1, 
P’i,j,e+1  vector from the origin to P’i,j,e+1, where P’i,j,e+1 

= P ”i,j,e + T ’i,j,e+1, 
P”i,j,e+1 vector from the origin to P”i,j,e+1, where P”i,j,e+1 

= P ” i,j,e + T ”i,j,e+1 and P ”i,j,0 = Pi,j, 
D  length parameter of T’i,j,e, 
n  number of dimensions of the search domain, 

and 
U”i,e  objective value at P”i,j. 
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Figure 2. Search points in the neighborhood search routine 

on a two dimensional X-Y plane 

 
In the PSO search, when Vi,j is better than Ui, the 

algorithm switches to the neighborhood search routine 
to search better solutions in the neighborhood. In the 
first step, let P”i,j,0 and Ui be Pi,j and Vi,j, respectively. 
The neighborhood search points are P’i,j,e+1 = P ”i,j,e+ 
T’i,j,e+1 as shown in Figure 2. If rk = 0 or 1, then (–1)rkd = 
d or –d. Therefore, the number of combinations is 2n. If 
e = 0, then the number of search points is 2n, however, if 
otherwise, it is 2n–1. This is because one of the search 
points, P’i,j,e+1, is the same as P”i,j,e. Nevertheless, the 
number of search points is extremely large when n is 
large. Therefore, we recommend that if the number of 
search points is greater than a certain number, a limitted 
number of search points are randomly selected, and so-
lutions are found. The number of the search points and d 
should be arbitrarily determined according to the type 
and size of the problem. 

In the neighborhood search routine, if U ”i,e is bet-
ter than Ui, then Ui ← U ”i,e and Pi,j←P”i,j,e, and the rou-
tine is repeated. Otherwise, the algorithm returns to PSO 
and continues its search algorithm. 
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5. NUMERICAL EXPERIMENTS 

In order to evaluate the methods described in the 
section 4, we implemented this method in the standard 
PSO (this is called the hybrid PSO in this paper) and 
solved six famous test functions, i.e., Sphere, Rosen-
brock, Griewank, Shekel’s foxholes, Six hump camel 
back function and Step function. Those are typical 
benchmark functions, which are considered to be the 
minimum standard for performance comparisons of evo-
lutionary algorithms. In this paper, we apply the hybrid 
PSO to these six test functions and compare its effec-
tiveness with the standard PSO. These functions are 
used for obtaining the minimum values. The functions 
used in this paper are as follows; 
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(d) Shekel’s foxholes 
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where -65.356 £ xi £ 65.356  

The optimal solution is 1. 

(e) Six hump camel back function 
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The Optimal solution is about -1.0316 

(f) Step function 
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where -5.12 £ xi £ 5.12 
Optimal solution is -25. 

 
The graphs of these functions are shown in Figure 3 
We set a value to w in equation (2) in three differ-

ent ways. 
 

(i) 
( )

=
-

- max min
max

max

w w
w w j

j
 

where wmax = 0.9, wmin = 0.4, jmax = 500, j = 1, 2, …, jmax 

We call this w as w1. 

(ii) w: a random number distributed uniformly between 
0.4 and 0.9. We call this w as w2.  

(iii) w: a random number distributed uniformly between 
0.9 and 1. We call this w as w3. 
We also assign 1 to c1 and c2. 

 
Here, we arbitrarily define the number of neighbor-

hood search points as min (2n-1 (2n for the first step), 
n+16). We also set d at 0.05 for these test functions. 

100 different initial solutions are generated by ran-
dom numbers and we solve the problems 100 times us-
ing each initial solution. We evaluate the hybrid PSO 
whether or not it is more effective than the standard 
PSO. 

Table 1 shows the average of 100 solutions up to 
the 500th iteration by the hybrid PSO and the standard 
PSO applied to Sphere, Rosenbrock, Griewank, Shekel’s 
foxholes, Six hump camel back function and Step func-
tion, when a member size is 50. 

 

(f) Step function

(b) Rosenbrock

(e) Six hump camel
back function

(a) Sphere

(c) Griewank (d) Shekel’s foxholes

 

Figure 3. The graphs of the six functions in a three dimen-
sional space 
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Figures 4(a) through (f) show the results of the hy-
brid PSO and the standard PSO with the member size of 
50 applied to the six test functions under w2. The hybrid 
PSO is much better in each w1, w2 and w3 than the stan-
dard PSO when applied to Sphere, Rosenbrock and 
Griewank. In the cases of Shekel’s foxholes, Six hump 
camel back function and Step function, there are no ob-
vious differences. There are also no significant differ-
ences among the results of w1, w2 and w3 when applied 
to the six functions. In Sphere, the obtained minimum 
values by the hybrid PSO up to the 500th iteration are 
very close to the optimal solution. In Rosenbrock, the 
optimal solution is 0 but the hybrid PSO and the stan-
dard can not reach the optimal solution up to the 500th 
iteration; need more iterations to obtain the optimal so-
lution. In Griewank, the obtained minimum values by 
the hybrid PSO up to the 500th iteration are very close to 

the optimal solution. 
Table 2 shows the number of the minimum values 

that reached the optimal solutions in Shekel’s foxholes, 
Six hump camel back function and Step function by 
using the hybrid and the standard PSO when the mem-
ber size is 50. In Six hump camel back function and 
Step function, the optimal solution can be obtained until 
the 35th iteration by the hybrid PSO and until the 50th 
iteration by the standard PSO. In Shekel’s foxholes, 
about 38 solutions reach to the optimal solution up to 
the 500th iteration in both PSO. 

Figures 5(a) through (f) show the average of 100 
solutions in w2 applied to the six test functions by the 
hybrid PSO when the member sizes are 10, 30 and 50. It 
is observed that the member sizes of 30 and 50 derive 
solutions better than the member size of 10 in Sphere, 
Rosenbrock and Griewank. However, even if the mem- 
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Figure 4. The average of 100 solutions up to 500th iteration by the hybrid PSO and the standard PSO under w2 
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Table 1. The average of 100 solutions up to 500th iteration 

Function Method w1 w2 w3 

Standard PSO 1,876.2 1,529.9 1,979.3 
Sphere 

Hybrid PSO 0.009 0.006 0.008 

Standard PSO 66.3 77.7 60.9 
Rosenbrock 

Hybrid PSO 32.5 32.6 32.5 

Standard PSO 409.5 403.3 367.4 
Griewank 

Hybrid PSO 0.011 0.011 0.012 

Standard PSO 2.13 2.20 2.16 Shekel’s  
foxholes Hybrid PSO 2.22 2.20 2.19 

Standard PSO -1.0316 -1.0316 -1.0316 Six hump 
camel back Hybrid PSO -1.0316 -1.0316 -1.0316 

Standard PSO -25 -24.9 -25 
Step 

Hybrid PSO -25 -25 -25 

 
ber size is 10, the solutions obtained are good enough. 
In Shekel’s foxholes, Six hump camel back function and 
Step function, there are significant differences in the 
average values among the member sizes. 

 
Table 2. The number of solutions that reaches the optimal 

when the member size is 50 

Function Method w1 w2 w3 

Standard PSO  37  38  38 Shekel’s 
foxholes Hybrid PSO  40  38  39 

Standard PSO 100 100 100 Six hump 
camel back Hybrid PSO 100 100 100 

Standard PSO 100 99 100 
Step 

Hybrid PSO 100 100 100 
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Figure 5. The average of 100 solutions by the hybrid PSO under w2 when the member sizes are 10, 30 and 50 
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Table 3. The number of solutions that reaches the optimal 
up to the 500th iteration by the hybrid PSO under 
w2 when the member sizes are 10, 30 and 50 

Function 10 30 50 

Shekel’s foxholes 13  28  38 

Six hump camel back 98 100 100 

Step 85 99 100 

 
Table 3 shows the number of solutions up to the 

500th iteration that reaches the optimal solution. From 
these results, it is obvious that the member size of 30 is 
enough to reach satisfactorily approximate solutions. In 
general, as the dimension and the search domain of the 
function increase, larger member size may derive the 
better solution faster. Larger member sizes require more 
computation time. Therefore, member sizes of 30 and 50 
are adequate for these kinds of test functions. 

Table 4 shows the comparison of computation time 
and accuracy between the standard PSO and the hybrid 
PSO. The both PSO were programmed in Digital Visual 
Fortran, version 6.0 and ran on the computer, Epson 
Endeavor NT300, Pentium M processor (1.6MHz), 
512MB memory with Microsoft Windows XP Profes-
sional SP2.  

 
Table 4. Comparison of computation time and accuracy 

between the standard PSO and the hybrid PSO 

Function Method Time Iteration Value 

Standard PSO 5,341 18.537 
Sphere 

Hybrid PSO 
12.34 

500 0.006 

Standard PSO 720 74.71 
Rosenbrock 

Hybrid PSO 
0.447 

500 32.61 

Standard PSO 1,417 115.51 
Griewank 

Hybrid PSO 
1.658 

500 0.011 

Standard PSO 574 2.2 Shekel’s 
foxholes Hybrid PSO 

0.248 
500 2.2 

Standard PSO 30 -1.0316 Six hump 
camel back Hybrid PSO 

0.0025 
30 -1.0316 

Standard PSO 50 -24.9 
Step 

Hybrid PSO 
0.0039 

29 -25 

   (time:sec) 

 
The member size of 50 applied to the six test func-

tions under w2 in 100 trials. For Sphere, Rosenbrock, 
Griewank,and Shekel’s foshole, the time is the average 
time period that the iterations of the hybrid PSO repeat 
500 times. For the other two test functions, the time is 
the average time period that the solutions of the hybrid 
PSO converge to the optimal solution. The values are 
the average solutions obtained when the procedures of 
the standard PSO and the hybrid PSO repeat for the time 
period. 

In Sphere, Rosenbrock and Griewank, the solutions 
by the hybrid PSO are much better than the solutions by 
the standard PSO for the same computation time. In 
other three test functions, almost same results can be 
obtained by both PSO in same computation time. It 
shows that when the standard PSO cannot easily find a 
good solution, the neighborhood search routine works 
very well. 

It can be stated that the hybrid PSO is effective for 
obtaining the better solutions through our numerical 
experiments. If the number of variables in the problem 
increases, the computation time will be increase in the 
hybrid PSO. The hybrid PSO can make the local search 
with the global search simultaneously. We are sure the 
hybrid PSO is more effective than the standard PSO. 

6. CONCLUSIONS 

In this paper, we introduce a neighborhood search 
algorithm to the standatd PSO. We apply the hybrid 
PSO to determine the minimum values of the six test 
functions, i.e., Sphere, Rosenbrok, Griewank, Shekel’s 
foxholes, Six hump camel back function, and Step func-
tion. Then, we discuss the performance and effective-
ness of the hybrid PSO. 

In the hybrid PSO, global search by the standard 
PSO and local search by the neighborhood search are 
performed simultaneously. When it is difficult that the 
standard PSO find a good solution, the neighborhood 
search routine cooperates with the standard PSO and 
search in a local area. Finally, the solutions by the hy-
brid PSO can obtain a better solution than the standard 
PSO. 

Consequently, we show that the hybrid PSO is con-
siderably stable and effective. It can obtain better solu-
tions in less iterations. The hybrid PSO requires more 
computation time than the standatd PSO, however, both 
computation times are small enough in practice. There-
fore, the hybrid PSO has a possibility to be applied to 
several types of real-world problems, for example, 
multi-dimensional knapsack problems, power system 
control problems, etc. 
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