• Title/Summary/Keyword: hybrid model

Search Result 2,554, Processing Time 0.029 seconds

Optimization of the Indole-3-Acetic Acid Production Medium of Pantoea agglomerans SRCM 119864 using Response Surface Methodology (반응표면분석법을 활용한 Pantoea agglomerans SRCM 119864의 Indole-3-acetic acid 생산 배지 최적화)

  • Ho Jin, Jeong;Gwangsu, Ha;Su Ji, Jeong;Myeong Seon, Ryu;JinWon, Kim;Do-Youn, Jeong;Hee-Jong, Yang
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.872-881
    • /
    • 2022
  • In this study, we optimized the composition of the indole-3-acetic acid (IAA) production medium using response surface methodology on Pantoea agglomerans SRCM 119864 isolated from soil. IAA-producing P. aglomerans SRCM 119864 was identified by 16S rRNA gene sequencing. There are 11 intermediate components known to affect IAA production, hence the effect of each component on IAA production was investigated using a Plackett-Burman design (PBD). Based on the PBD, sucrose, tryptone, and sodium chloride were selected as the main factors that enhanced the IAA production at optimal L-tryptophan concentration. The predicted maximum IAA production (64.34 mg/l) was obtained for a concentration of sucrose of 13.38 g/l, of tryptone of 18.34 g/l, of sodium chloride of 9.71 g/l, and of L-tryptophan of 6.25 g/l using a the hybrid design experimental model. In the experiment, the nutrient broth medium supplemented with 0.1% L-tryptophan as the basal medium produced 45.24 mg/l of IAA, whereas the optimized medium produced 65.40 mg/l of IAA, resulting in a 44.56% increase in efficiency. It was confirmed that the IAA production of the designed optimal composition medium was very similar to the predicted IAA production. The statistical significance and suitability of the experimental model were verified through analysis of variance (ANOVA). Therefore, in this study, we determined the optimal growth medium concentration for the maximum production of IAA, which can contribute to sustainable agriculture and increase crop yield.

3D Modeling from 2D Stereo Image using 2-Step Hybrid Method (2단계 하이브리드 방법을 이용한 2D 스테레오 영상의 3D 모델링)

  • No, Yun-Hyang;Go, Byeong-Cheol;Byeon, Hye-Ran;Yu, Ji-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.7
    • /
    • pp.501-510
    • /
    • 2001
  • Generally, it is essential to estimate exact disparity for the 3D modeling from stereo images. Because existing methods calculate disparities from a whole image, they require too much cimputational time and bring about the mismatching problem. In this article, using the characteristic that the disparity vectors in stereo images are distributed not equally in a whole image but only exist about the background and obhect, we do a wavelet transformation on stereo images and estimate coarse disparity fields from the reduced lowpass field using area-based method at first-step. From these coarse disparity vectors, we generate disparity histogram and then separate object from background area using it. Afterwards, we restore only object area to the original image and estimate dense and accurate disparity by our two-step pixel-based method which does not use pixel brightness but use second gradient. We also extract feature points from the separated object area and estimate depth information by applying disparity vectors and camera parameters. Finally, we generate 3D model using both feature points and their z coordinates. By using our proposed, we can considerably reduce the computation time and estimate the precise disparity through the additional pixel-based method using LOG filter. Furthermore, our proposed foreground/background method can solve the mismatching problem of existing Delaunay triangulation and generate accurate 3D model.

  • PDF

A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA (기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교)

  • Ko, Eun Byeol;Moon, Il-Ju;Jeong, Yeong Yun;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.

Modeling of the charge and discharge behavior of the 2S2P(2 series-2 parallel) AGM battery system for commercial vehicles (상용자동차용 직·병렬 AGM 배터리 시스템의 충·방전 거동 모델링)

  • Lee, Jeongbin;Kim, Ui Seong;Yi, Jae-Shin;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-355
    • /
    • 2012
  • Recent in the world environmental issues and energy depletion problems have been received attention. One way to solve these problems is to use hybrid electric vehicles (HEVs). Therefore, the interest in HEV technology is higher than ever before. Viable candidates for the energy-storage systems in HEV applications may be absorbent glass mat (AGM) lead-acid, nickel-metal-hydride (Ni-MH) and rechargeable lithium batteries. The AGM battery has advantages in terms of relatively low cost, high charge efficiency, low self-discharge, low maintenance requirements and safety as compared to the other batteries. In order to implement HEV system in required more electric power commercial vehicles AGM batteries was connected to 2 series-2 parallels (2S2P). In this study, a one-dimensional modeling is carried-out to predict the behaviors of 2S2P AGM batteries system during charge and discharge. The model accounts for electrochemical reaction rates, charge conservation and mass transport. In order to validate the model, modeling results are compared with the experimentally measured data in various conditions.

Implementation of Massive FDTD Simulation Computing Model Based on MPI Cluster for Semi-conductor Process (반도체 검증을 위한 MPI 기반 클러스터에서의 대용량 FDTD 시뮬레이션 연산환경 구축)

  • Lee, Seung-Il;Kim, Yeon-Il;Lee, Sang-Gil;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.21-28
    • /
    • 2015
  • In the semi-conductor process, a simulation process is performed to detect defects by analyzing the behavior of the impurity through the physical quantity calculation of the inner element. In order to perform the simulation, Finite-Difference Time-Domain(FDTD) algorithm is used. The improvement of semiconductor which is composed of nanoscale elements, the size of simulation is getting bigger. Problems that a processor such as CPU or GPU cannot perform the simulation due to the massive size of matrix or a computer consist of multiple processors cannot handle a massive FDTD may come up. For those problems, studies are performed with parallel/distributed computing. However, in the past, only single type of processor was used. In GPU's case, it performs fast, but at the same time, it has limited memory. On the other hand, in CPU, it performs slower than that of GPU. To solve the problem, we implemented a computing model that can handle any FDTD simulation regardless of size on the cluster which consist of heterogeneous processors. We tested the simulation on processors using MPI libraries which is based on 'point to point' communication and verified that it operates correctly regardless of the number of node and type. Also, we analyzed the performance by measuring the total execution time and specific time for the simulation on each test.

A Study on A Model Sample for Guidance System for Copyright of Domestic Journals and Open Access Policy (국내 학술지 저작권 및 오픈액세스 정책 안내시스템 모형 연구)

  • Kim, Gyuhwan
    • Journal of Korean Library and Information Science Society
    • /
    • v.47 no.4
    • /
    • pp.265-288
    • /
    • 2016
  • The study aimed to suggest a model sample for guidance system for copyright of domestic journals and open access policy. Toward this end, analyses were conducted to examine copyright of domestic journals and open access environment. As a result of analyses, it turned out that 33.8% of domestic journals had 'regulations on ownership of rights to papers published in journals,' and that the subject to ownership of rights to papers published in domestic journals accounted for 28.8%, which was the highest rate. Of domestic journals, 34% charged a subscription fee, and they were toll access journals, and 56% were free access journals. As for system examples of guide system for copyright of foreign journals and open access policy, analyses were conducted to examine and investigate SHERPA/RoMEO in the U.K. and SCPJ in Japan and generate considerations at a time of domestic application. What needs to be taken into account is that overseas examples are focused on collecting and introducing self-archiving policy by authors for academic journals, so there are limitations in offering information including open access publication policy for domestic journals. Based on the analytical result, the study designated the purpose, direction and four steps that need to be considered at a time of development of guide system models for copyright and open access policy for domestic journals before suggestion of the basic direction and operational methods by stage.

In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor (광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가)

  • Ahmad, Rizwan;Kim, Jin Kyu;Kim, Jong Hak;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.328-335
    • /
    • 2017
  • Fabricating photocatalytic composite membrane with a mesoporous and tailored morphological structure would have significant implication for environmental remediation. In this study, we reported hybrid $TiO_2$ immobilized photocatalytic membrane and its application for the treatment of dye solution. Photocatalytic film with high porosity and homogeneity was fabricated by graft copolymer as polymer template. Hybridization of membrane filtration with photocatalysis was successfully achieved by photocatalytic membrane reactor developed. Result showed that membrane permeability was significantly reduced after immobilizing the $TiO_2$ film on bare $Al_2O_3$ support. The membrane characterization indicated that well organized $TiO_2$ film was successfully formed on $Al_2O_3$ support. Benefiting from the controlled morphology of $TiO_2$ film, the composite membrane exhibited almost complete degradation of organic dye within 5 h of filtration under UV illumination. Langmuir-Hinshelwood model explained degradation of organic dye. First-order rate constant was approximately six times with $TiO_2$ immobilized composite ceramic membrane, higher than the one with the bare $Al_2O_3$ support (0.0081 vs. $0.0013min^{-1}$).

Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18

  • Serivichyaswat, Phanu;Ryu, Hak-Seung;Kim, Wanhui;Kim, Soonkap;Chung, Kyung Sook;Kim, Jae Joon;Ahn, Ji Hoon
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • The regulation of flowering time has crucial implications for plant fitness. MicroRNA156 (miR156) represses the floral transition in Arabidopsis thaliana, but the mechanisms regulating its transcription remain unclear. Here, we show that two AGAMOUS-like proteins, AGL15 and AGL18, act as positive regulators of the expression of MIR156. Small RNA northern blot analysis revealed a significant decrease in the levels of mature miR156 in agl15 agl18 double mutants, but not in the single mutants, suggesting that AGL15 and AGL18 co-regulate miR156 expression. Histochemical analysis further indicated that the double mutants showed a reduction in MIR156 promoter strength. The double mutants also showed reduced abundance of pri-miR156a and pri-miR156c, two of the primary transcripts from MIR156 genes. Electrophoretic mobility shift assays demonstrated that AGL15 directly associated with the CArG motifs in the MIR156a/c promoters. AGL18 did not show binding affinity to the CArG motifs, but pull-down and yeast two-hybrid assays showed that AGL18 forms a heterodimer with AGL15. GFP reporter assays and bimolecular fluorescence complementation (BiFC) showed that AGL15 and AGL18 co-localize in the nucleus and confirmed their in vivo interaction. Overexpression of miR156 did not affect the levels of AGL15 and AGL18 transcripts. Taking these data together, we present a model for the transcriptional regulation of MIR156. In this model, AGL15 and AGL18 may form a complex along with other proteins, and bind to the CArG motifs of the promoters of MIR156 to activate the MIR156 expression.

Application of An Ecological Engineering Approach in Evaluating Protected Area at Local Scales (생태계 보호지역 평가에서 생태공학 도입과 활용)

  • Koo, Kyung Ah
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.2
    • /
    • pp.144-155
    • /
    • 2020
  • This research developed an approach to identify ecologically important areas at local scales and explained how the results of this approach could contribute to extend the protected areas in the Republic of Korea (ROK). While most developed countries have considered various biotic and abiotic factors, ecological processes, migration routes, habitat connectivity, ecosystem services, and etc. to determine the protected areas, ROK has considered a few factors focusing on biodiversity, landscape, and the habitats of endangered organisms. However, for sustainable management of our nature, we need comprehensive understanding of various ecosystem factors and interactions among them at local scales in designating protected areas. Forthis, we developed a conceptual model based on the ecological engineering approach and then explained how the results of this approach could contribute to extend the protected areas. In particular, we considered future land-use and climate change in determining the priority areas for novel protected areas. Our research suggested an effective methodology 1) to include various ecosystem factors and 2) to consider future environmental changes as well as current environmental conditions in finding the ecologically important areas and prioritizing these areas. However, our approach has limitations on the real-world applications due to the lack of fundamental information and data on our ecosystems. To improve the effectiveness of our approach in the real-world applications, we need various long-term ecological research results, environmental and ecological monitoring data, and both current and future spatial environmental data.

Supercomputing Performance Demand Forecasting Using Cross-sectional and Time Series Analysis (횡단면분석과 추세분석을 이용한 슈퍼컴퓨팅 성능수요 예측)

  • Park, Manhee
    • Journal of Technology Innovation
    • /
    • v.23 no.2
    • /
    • pp.33-54
    • /
    • 2015
  • Supercomputing performance demand forecasting at the national level is an important information to the researchers in fields of the computational science field, the specialized agencies which establish and operate R&D infrastructure, and the government agencies which establish science and technology infrastructure. This study derived the factors affecting the scientific and technological capability through the analysis of supercomputing performance prediction research, and it proposed a hybrid forecasting model of applying the super-computer technology trends. In the cross-sectional analysis, multiple regression analysis was performed using factors with GDP, GERD, the number of researchers, and the number of SCI papers that could affect the supercomputing performance. In addition, the supercomputing performance was predicted by multiplying in the cross-section analysis with technical progress rate of time period which was calculated by time series analysis using performance(Rmax) of Top500 data. Korea's performance scale of supercomputing in 2016 was predicted using the proposed forecasting model based on data of the top500 supercomputer and supercomputing performance demand in Korea was predicted using a cross-sectional analysis and technical progress rate. The results of this study showed that the supercomputing performance is expected to require 15~30PF when it uses the current trend, and is expected to require 20~40PF when it uses the trend of the targeting national-level. These two results showed significant differences between the forecasting value(9.6PF) of regression analysis and the forecasting value(2.5PF) of cross-sectional analysis.