DOI QR코드

DOI QR Code

상용자동차용 직·병렬 AGM 배터리 시스템의 충·방전 거동 모델링

Modeling of the charge and discharge behavior of the 2S2P(2 series-2 parallel) AGM battery system for commercial vehicles

  • 이정빈 (아주대학교 에너지시스템학부) ;
  • 김의성 (아주대학교 에너지시스템학부) ;
  • 이재신 (아주대학교 에너지시스템학부) ;
  • 신치범 (아주대학교 에너지시스템학부)
  • Lee, Jeongbin (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University) ;
  • Kim, Ui Seong (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University) ;
  • Yi, Jae-Shin (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University) ;
  • Shin, Chee Burm (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University)
  • 투고 : 2012.09.21
  • 심사 : 2012.12.03
  • 발행 : 2012.12.31

초록

최근 전 세계가 환경문제와 에너지 자원 고갈 문제에 대해 관심을 집중하고 있다. 이런 문제들을 해결하기 위한 여러 가지 방법들 중 하나가 하이브리드자동차(HEVs)이다. 그래서 하이브리드자동차 기술에 대한 사람들의 관심이 높아지고 있다. 하이브리드 자동차의 에너지 저장 시스템의 후보들은 AGM 배터리, Ni-MH 배터리 및 리튬배터리 등이다. AGM 배터리는 상대적으로 낮은 가격, 높은 충전 효율, 낮은 자가 방전 및 높은 안전성 등이 장점이다. 상용자동차에 하이브리드 자동차 시스템을 적용하기 위해서는 4개의 AGM 배터리를 2개의 직렬과 2개의 병렬로 연결해야한다. 본 연구에서는 상용차용으로 사용될 직 병렬로 연결되어 있는 AGM 배터리 시스템의 충 방전 특성을 예측하기 위하여 AGM 배터리의 충 방전 모델링을 수행하였다. AGM 배터리의 충 방전 모델링을 위해 내부에서 일어나는 전기화학 반응, 전하 보전과 물질 보존 법칙을 통해 배터리의 지배방정식으로 세웠다. 모델링 결과의 정확성을 검증하기 위해 다양한 조건에서의 실험결과와 비교하였다.

Recent in the world environmental issues and energy depletion problems have been received attention. One way to solve these problems is to use hybrid electric vehicles (HEVs). Therefore, the interest in HEV technology is higher than ever before. Viable candidates for the energy-storage systems in HEV applications may be absorbent glass mat (AGM) lead-acid, nickel-metal-hydride (Ni-MH) and rechargeable lithium batteries. The AGM battery has advantages in terms of relatively low cost, high charge efficiency, low self-discharge, low maintenance requirements and safety as compared to the other batteries. In order to implement HEV system in required more electric power commercial vehicles AGM batteries was connected to 2 series-2 parallels (2S2P). In this study, a one-dimensional modeling is carried-out to predict the behaviors of 2S2P AGM batteries system during charge and discharge. The model accounts for electrochemical reaction rates, charge conservation and mass transport. In order to validate the model, modeling results are compared with the experimentally measured data in various conditions.

키워드

참고문헌

  1. Guo, Y.; Groiss, R.; Döring, H.; Garche J. Rate Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve Regulated Lead Acid Batteries. Journal of The Electrochemical Society, 1995, 146, 3949-3957.
  2. Dimpault-Darcy, E.; Groiss, R.; Döring, H.; Garche J. Rate Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve Regulated Lead Acid Batteries. Journal of The Electrochemical Society, 1995, 146, 3949-3957.
  3. Nguyen, T. V.; White, R. E. A Two Dimensional Mathematical Model of a Porous Lead Dioxide Electrode in a Lead Acid Cell. Journal of The Electrochemical Society, 1988, 135, 278-285. https://doi.org/10.1149/1.2095601
  4. Bernardi, D. M.; Carpenter, M. L. A Mathematical Model of the Oxygen Recombination Lead Acid Cell. Journal of The Electrochemical Society, 1995, 142, 2631-2642. https://doi.org/10.1149/1.2050066
  5. Newman, J.; Tiedemann, W. Simulation of Recombinant Lead Acid Batteries. Journal of The Electrochemical Society, 1997, 144, 3081-3091. https://doi.org/10.1149/1.1837963
  6. Tenno, A.; Tenno, R.; Suntio, T. Evaluation of VRLA battery under overcharging: model for battery testing. Journal of Power Source, 2002, 111, 65-82. https://doi.org/10.1016/S0378-7753(02)00276-8
  7. Srinivasan, V.; Wang, G. Q.; Wang, C. Y. Mathematical Modeling of Current-Interrupt and Pulse Operation of Valve-Regulated Lead Acid Cells. Journal of The Electrochemical Society, 2001, 150, A316-A325.
  8. Esfahanian, V.; Torabi, F. Numerical simulation of lead-acid batteries using Keller-Box method. Journal of Power Source, 2006, 158, 949-952. https://doi.org/10.1016/j.jpowsour.2005.11.031
  9. Esfahanian, V.; Torabi, F.; Mosahebi A. An innovative computational algorithm for simulation of lead-acid batteries. Journal of Power Source, 2008, 176, 373-380. https://doi.org/10.1016/j.jpowsour.2007.10.052
  10. Zhang, J.; Ci, S.; Sharif H.; Alahmad, M.; Modeling Discharge Behavior of Multicell Battery. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25, 1133-1141. https://doi.org/10.1109/TEC.2010.2048904
  11. Wu, M. S.; Lin, C. Y.; Wang, Y. Y.; Wan C. C.; Yang, C. R.; Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack. Electrochimica Acta, 2006, 52, 1349-1357. https://doi.org/10.1016/j.electacta.2006.07.036