• Title/Summary/Keyword: hybrid machine learning

Search Result 168, Processing Time 0.025 seconds

A Hybrid Approach Combining Data Envelopment Analysis and Machine Learning to Evaluate the Efficiency of System Integration Projects (SI 프로젝트의 효율성 평가를 위해 자료포괄분석과 기계학습을 결합한 하이브리드 분석)

  • Hong, Han-Kuk;Ha, Sung-Ho;Park, Sang-Chan
    • Asia pacific journal of information systems
    • /
    • v.10 no.1
    • /
    • pp.19-35
    • /
    • 2000
  • Data Envelopment Analysis(DEA), a non-parametric productivity analysis tool, has become an accepted approach for assessing efficiency in a wide range of fields. Despite of its extensive applications, some features of DEA remain bothersome. DEA offers no guidelines to where relatively inefficient DMU(Decision Making Unit) improve since a reference set of an inefficient DMU consists of several efficient DMUs and it doesn't provide a stepwise path for improving the efficiency of each inefficient DMU considering the difference of efficiency. We aim to show that DEA can be used to evaluate the efficiency of System Integration Projects and suggest the methodology which overcomes the limitation of DEA through hybrid analysis utilizing DEA along with machine learning.

  • PDF

Hybrid approach combining Data Envelopment Analysis and Machine Learning to Evaluate the Efficiency of System Integration Projects (SI 프로젝트의 효율성 평가를 위해 자료포괄분석과 기계학습을 결합한 하이브리드 분석)

  • Hong Han-Kuk;Kim Jong-Weon;Seo Bo-Ra
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.77-88
    • /
    • 2006
  • Data Envelopment Analysis (DEA), a non-parametric productivity analysis tool, has become an accepted approach for assessing efficiency in a wide range of fields. Despite of its extensive applications, some features of DEA remain bothersome. DEA offers no guidelines to where relatively inefficient DMU(Decision Making Unit) improve since a reference set of an inefficient DMU consists of several efficient DMUs and it doesn't provide a stepwise path for improving the efficiency of each inefficient DMU considering the difference of efficiency. We aim to show that DEA can be used to evaluate the efficiency of System Integration Projects and suggest the methodology which overcomes the limitation of DEA through hybrid analysis utilizing DEA along with machine learning.

  • PDF

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

A novel liquefaction prediction framework for seismically-excited tunnel lining

  • Shafiei, Payam;Azadi, Mohammad;Razzaghi, Mehran Seyed
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.401-419
    • /
    • 2022
  • A novel hybrid extreme machine learning-multiverse optimizer (ELM-MVO) framework is proposed to predict the liquefaction phenomenon in seismically excited tunnel lining inside the sand lens. The MVO is applied to optimize the input weights and biases of the ELM algorithm to improve its efficiency. The tunnel located inside the liquefied sand lens is also evaluated under various near- and far-field earthquakes. The results demonstrate the superiority of the proposed method to predict the liquefaction event against the conventional extreme machine learning (ELM) and artificial neural network (ANN) algorithms. The outcomes also indicate that the possibility of liquefaction in sand lenses under far-field seismic excitations is much less than the near-field excitations, even with a small magnitude. Hence, tunnels designed in geographical areas where seismic excitations are more likely to be generated in the near area should be specially prepared. The sand lens around the tunnel also has larger settlements due to liquefaction.

Machine learning-based design automation of CMOS analog circuits using SCA-mGWO algorithm

  • Vijaya Babu, E;Syamala, Y
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.837-848
    • /
    • 2022
  • Analog circuit design is comparatively more complex than its digital counterpart due to its nonlinearity and low level of abstraction. This study proposes a novel low-level hybrid of the sine-cosine algorithm (SCA) and modified grey-wolf optimization (mGWO) algorithm for machine learning-based design automation of CMOS analog circuits using an all-CMOS voltage reference circuit in 40-nm standard process. The optimization algorithm's efficiency is further tested using classical functions, showing that it outperforms other competing algorithms. The objective of the optimization is to minimize the variation and power usage, while satisfying all the design limitations. Through the interchange of scripts for information exchange between two environments, the SCA-mGWO algorithm is implemented and simultaneously simulated. The results show the robustness of analog circuit design generated using the SCA-mGWO algorithm, over various corners, resulting in a percentage variation of 0.85%. Monte Carlo analysis is also performed on the presented analog circuit for output voltage and percentage variation resulting in significantly low mean and standard deviation.

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

Win/Lose Prediction System : Predicting Baseball Game Results using a Hybrid Machine Learning Model (혼합형 기계 학습 모델을 이용한 프로야구 승패 예측 시스템)

  • 홍석미;정경숙;정태충
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.6
    • /
    • pp.693-698
    • /
    • 2003
  • Every baseball game generates various records and on the basis of those records, win/lose prediction about the next game is carried out. Researches on win/lose predictions of professional baseball games have been carried out, but there are not so good results yet. Win/lose prediction is very difficult because the choice of features on win/lose predictions among many records is difficult and because the complexity of a learning model is increased due to overlapping factors among the data used in prediction. In this paper, learning features were chosen by opinions of baseball experts and a heuristic function was formed using the chosen features. We propose a hybrid model by creating a new value which can affect predictions by combining multiple features, and thus reducing a dimension of input value which will be used for backpropagation learning algorithm. As the experimental results show, the complexity of backpropagation was reduced and the accuracy of win/lose predictions on professional baseball games was improved.

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF