• 제목/요약/키워드: hybrid learning

검색결과 565건 처리시간 0.027초

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita;Thakur, M.S.;Sharma, Nitisha;Almohammed, Fadi H.;Sihag, Parveen
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.253-279
    • /
    • 2022
  • This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.

PSO based neural network to predict torsional strength of FRP strengthened RC beams

  • Narayana, Harish;Janardhan, Prashanth
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.635-642
    • /
    • 2021
  • In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

머신 러닝을 사용한 개인화된 뉴스 추천 시스템 (Personalized News Recommendation System using Machine Learning)

  • 펭소니;양예선;박두순;이혜정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.385-387
    • /
    • 2022
  • With the tremendous rise in popularity of the Internet and technological advancements, many news keeps generating every day from multiple sources. As a result, the information (News) on the network has been highly increasing. The critical problem is that the volume of articles or news content can be overloaded for the readers. Therefore, the people interested in reading news might find it difficult to decide which content they should choose. Recommendation systems have been known as filtering systems that assist people and give a list of suggestions based on their preferences. This paper studies a personalized news recommendation system to help users find the right, relevant content and suggest news that readers might be interested in. The proposed system aims to build a hybrid system that combines collaborative filtering with content-based filtering to make a system more effective and solve a cold-start problem. Twitter social media data will analyze and build a user's profile. Based on users' tweets, we can know users' interests and recommend personalized news articles that users would share on Twitter.

Prediction Model for Gastric Cancer via Class Balancing Techniques

  • Danish, Jamil ;Sellappan, Palaniappan;Sanjoy Kumar, Debnath;Muhammad, Naseem;Susama, Bagchi ;Asiah, Lokman
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.53-63
    • /
    • 2023
  • Many researchers are trying hard to minimize the incidence of cancers, mainly Gastric Cancer (GC). For GC, the five-year survival rate is generally 5-25%, but for Early Gastric Cancer (EGC), it is almost 90%. Predicting the onset of stomach cancer based on risk factors will allow for an early diagnosis and more effective treatment. Although there are several models for predicting stomach cancer, most of these models are based on unbalanced datasets, which favours the majority class. However, it is imperative to correctly identify cancer patients who are in the minority class. This research aims to apply three class-balancing approaches to the NHS dataset before developing supervised learning strategies: Oversampling (Synthetic Minority Oversampling Technique or SMOTE), Undersampling (SpreadSubsample), and Hybrid System (SMOTE + SpreadSubsample). This study uses Naive Bayes, Bayesian Network, Random Forest, and Decision Tree (C4.5) methods. We measured these classifiers' efficacy using their Receiver Operating Characteristics (ROC) curves, sensitivity, and specificity. The validation data was used to test several ways of balancing the classifiers. The final prediction model was built on the one that did the best overall.

Spectral Pooling: DFT 기반 풀링 계층이 보여주는 여러 가능성에 대한 연구 (Spectral Pooling: A study on the various possibilities of the DFT-based Pooling layer)

  • 이성주;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.87-90
    • /
    • 2020
  • GPU의 발전과 함께 성장한 딥러닝(Deep Learning)은 영상 분류 문제에서 최고의 성능을 보이고 있다. 그러나 합성곱 신경망 기반의 모델을 깊게 쌓음에 따라 신경망의 표현력이 좋아짐과 동시에 때로는 학습이 잘되지 않고 성능이 저하되는 등의 부작용도 등장했다. 성능 향상을 방해하는 주요 요인 중 하나는, 차원감소 목적에 따라 필연적으로 정보 손실을 겪어야 하는 풀링 계층에 있다. 따라서 특성맵(Feature map)의 차원감소를 통해 얻게 되는 비용적 이득과 모델의 분류 성능 사이의 취사선택(Trade-off)이 존재한다. 그리고 이로부터 자유로워지기 위한 다양한 연구와 기법이 존재하는데 Spectral Pooling도 이 중 하나이다. 본 논문에서는 이산 푸리에 변환(Discrete Fourier Transform, DFT)을 이용한 Spectral Pooling에 대한 소개와, 해당 풀링의 성질을 통상적으로 사용되고 있는 Max Pooling과의 성능 비교를 통해 분석한다. 또한 영상 내 고주파수 부분에서 특히 더 강건하지 못하다는 맥스 풀링의 고질적인 문제점을, Spectral Pooling과의 하이브리드(Hybrid) 구조를 통해 어떻게 극복해나갈 것인지 그 가능성을 중심으로 실험을 수행했다.

  • PDF

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer

  • Ruwei Ma;Zhexuan Zhu;Chunxiang Li;Liyuan Cao
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.461-475
    • /
    • 2024
  • A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.

효율적인 학습규칙의 신경망 기반 독립성분분석을 이용한 영상신호의 분리 및 특징추출 (Separations and Feature Extractions for Image Signals Using Independent Component Analysis Based on Neural Networks of Efficient Learning Rule)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.200-208
    • /
    • 2003
  • 본 연구에서는 효율적인 학습규칙의 신경망 기반 독립성분분석기법을 이용한 영상신호의 분리와 특징추출을 제안하였다. 제안된 학습규칙은 할선법과 모멘트를 이용한 조합형 고정점 학습알고리즘이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $512\times512$의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 혼합영상의 분리에 적용한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 $256\times256$ 픽셀의 10개 지문상과 $480\times225$ 픽셀의 지폐영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘보다도 빠른 특징추출 속도가 있음을 확인하였다. 한편 추출된 $16\times16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.