• Title/Summary/Keyword: hybrid journal bearing

Search Result 136, Processing Time 0.026 seconds

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

An Experimental Study of Settlement Behavior of Artificial Reef according to Reinforcement Characteristics (해저 연약지반 보강 조건에 따른 인공어초 침하 거동에 대한 실험적 연구)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Seabed settlement and erosion sometimes occurr when a artificial reef is installed in soft seabed. Therefore, this study carried out CBR test and water tank settlement test to investigate settlement behavior of artificial reef according to reinforcement characteristics such as reinforced types and reinforced area. Soil types of ground are sand, silt and clay deposits. Three reinforced types were prepared: unreinforced, geogrid and hybrid bamboo mat(HBM) with different reinforced area. Laboratory test results indicated that reinforced artificial reef improved bearing capacity of ground and reduced settlement as reinforced area increased. Especially, reinforced HBM provided more bearing capacity and less settlement than reinforced geogrid.

Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings (저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • This study presents application effects of hybrid seismic isolation system to realize high seismic performance for low-rise lightweight buildings through a non-linear analysis and onsite experiments. The complex seismic isolation system applied in this study is a method of mixing sliding bearing and laminated rubber bearing in order to overcome limitation of laminated rubber bearing in increasing natural period of the whole seismic isolation system. As a result of the non-linear analysis, seismic isolation buildings designed with complex seismic isolation system are safe because its maximum response displacement is within allowable design displacement even for a strong earthquake which rarely occurs and its maximum response shear is less than design seismic force. As a result of the onsite experiment, the rigidity of seismic isolation stories corresponds to approximately 95.8% of the design equivalent stiffness value. This indicates that actual properties of the whole seismic isolation system correspond to design values.

Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing (하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가)

  • Lee, J.P.;Kim, H.G.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems

  • Cheon, Gill-Jeong;Park, Robert G. er
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.606-621
    • /
    • 2004
  • A dynamic analysis using a hybrid finite element method was performed to characterize the effects of a number of manufacturing errors on bearing forces and critical tooth stress in the elements of a planetary gear system. Some tolerance control guidelines for managing bearing forces and critical stress are deduced from the results. The carrier indexing error for the planet assembly and planet runout error are the most critical factors in reducing the planet bearing force and maximizing load sharing, as well as in reducing the critical stress.

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.

The Application of MHS Frames for Apartments of Extended Life in Korea (공동주택 장수명화를 위해 MHS 공법이 적응된 골조공법 개선방안)

  • Hong, Won-Kee;Kim, Jin-Min;Kim, Sun-Kuk;Kim, Hyung-Geun;Yoon, Ki-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.107-115
    • /
    • 2008
  • Bearing wall apartments have been introduced to meet the needs of population growth in metropolis since 1980 in Korea. It is extremely difficult to remodel bearing wall apartments. Noises and vibrations generated between floors are also problems to solve. This paper introduces rahmen structures that enable easy remodel. Modularized Hybrid System(MHS) is demonstrated to be effective in terms of material quantity, construction costs, and amount of $CO_2$ emission compared with those of bearing wall structures. Housings with MHS composite girder ensure the flexibility of architectural plan and easy remodel while the floor heights are maintained the same as bearing wall structures. The reduction of the concrete and reinforcing steels tonnage decreased construction cost of MHS multi-residential housings. The $CO_2$ omission was also diminished in accordance with the reduction of construction materials. This paper describes new structural system adapting MHS frames to propose the extended life of residential housings and reduce the national resources by preventing unnecessary rebuilding of housings.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.

A Study on the Stability Improvement of Rotor System Supported by Hydrodynamic Bearing (동수압 저어널 베어링으로 지지된 회전축계의 안정성 향상에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 1995
  • The anisotropic pressure distribution of the hydrodynamic bearing may generate the unstable vibration phenomenon over a certain speed. These vibrations, known as whirl, whip or rotor instability, cannot be sustained over a wide range of rotational spees. Besides these vibrations not only perturb the normal operation of a rotating machine, but may also cause serious damage to the machinery system. And, it is really impossible to change one parameter without changing others, or difficult to fabricate the modified non-circular type bearing, with all the other cures used just now, In this study, hybrid bearing with magnetic exciter is designed for stability improvement of hydrodynamic bearing rotor system without changing mechanical parameters. For stability study, eigenvalue study of the bearing-rotor system is executed by finite element method and results of analyses and experiments show the possibilities of the stability improvement of the hydrodynamic bearing system by using the electricmagnetic force.