Journal of the Society of Naval Architects of Korea
/
v.31
no.3
/
pp.12-18
/
1994
Optimization in the engineering design is to select the best of many possible design alternatives in a complex design space. In order to optimize, various optimization methods have been used. One major problem of traditional optimization methods is that they often result in local optima. Recently genetic algorithm based on the mechanics of natural selection and natural genetics is used in many application fields for optimization. Genetic algorithm is more powerful to local optima, but it requires more calculation time and has difficulties in finding exact optimum point in design variable with real data type generally. In this paper. hybrid method was developed by coupling genetic algorithm and traditional direct search method. The developed method finds out a region for global optimum using genetic algorithm, and is to search global optimum using direct search method based on results obtained from genetic algorithm. By using hybrid method, calculation time is reduced and search efficient for optimum point is increased.
Genetic Algorithms are optimization algorithm that mimics biological evolution to solve optimization problems. Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex fitness landscapes. Hybrid genetic algorithm that is combined with local search called learning can sustain the balance between exploration and exploitation. The genetic traits that each individual in the population learns through evolution are transferred back to the next generation, and when this learning is combined with genetic algorithm we can expect the improvement of the search speed. This paper proposes a genetic algorithm based Cellular Learning with accelerated learning capability for function optimization. Proposed Cellular Learning strategy is based on periodic and convergent behaviors in cellular automata, and on the theory of transmitting to offspring the knowledge and experience that organisms acquire in their lifetime. We compared the search efficiency of Cellular Learning strategy with those of Lamarckian and Baldwin Effect in hybrid genetic algorithm. We showed that the local improvement by cellular learning could enhance the global performance higher by evaluating their performance through the experiment of various test bed functions and also showed that proposed learning strategy could find out the better global optima than conventional method.
International Journal of Aeronautical and Space Sciences
/
v.14
no.4
/
pp.341-349
/
2013
This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.
In this paper, a hybrid fuzzy controller using genetic algorithm based on parameter estimation mode to obtain optimal control parameter is presented. First, The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PID's output in steady state by a fuzzy variable, namely, membership function of weighting coefficient. Second, genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller utilizing the conventional methods for finding PID parameters and estimation mode of scaling factor. The algorithms estimates automatically the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules according to the rate of change and limitation condition of control input. Computer simulations are conducted to evaluate the performance of proposed hybrid fuzzy controller. ITAE, overshoot and rising time are used as a performance index of controller.
Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
Proceedings of the KIEE Conference
/
1999.07g
/
pp.2908-2910
/
1999
In this paper, a fuzzy model is identified and optimized using the hybrid algorithm and HCM clustering method. Here, the hybrid algorithm is carried out as the structure combined with both a genetic algorithm and the improved complex method. The one is utilized for determining the initial parameters of membership function, the other for obtaining the fine parameters of membership function. HCM clustering algorithm is used to determine the confined region of initial parameters and also to avoid overflow phenomenon during auto-tuning of hybrid algorithm. And the standard least square method is used for the identification of optimum consequence parameters of fuzzy model. Two numerical examples are shown to evaluate the performance of the proposed model.
We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.
The performance of a distributed database system depends particularly on the site-allocation of the fragments. Queries access different fragments among the sites, and an originating site exists for each query. A data allocation algorithm should distribute the fragments to minimize the transfer and settlement costs of executing the query plans. The primary cost for a data allocation algorithm is the cost of the data transmission across the network. The data allocation problem in a distributed database is NP-complete, and scalable evolutionary algorithms were developed to minimize the execution costs of the query plans. In this paper, quadratic assignment problem heuristics were designed and implemented for the data allocation problem. The proposed algorithms find near-optimal solutions for the data allocation problem. In addition to the fast ant colony, robust tabu search, and genetic algorithm solutions to this problem, we propose a fast and scalable hybrid genetic multi-start tabu search algorithm that outperforms the other well-known heuristics in terms of execution time and solution quality.
The proposed hybrid algorithm combines the benefits of rapid convergence property of mean filed annealing(MFA) and the effective genetic operations of simulated annealing-like genetic algorithm(SGA). This algorithm is applied to the isotropic material stock cutting problem, especially to glass cutting in distributed computing environments base on MPI called message passing interface. The glass cutting is to place the required rectangular patterns to the given large glass sheets resulting in reducing the wasted scrap area. Our experimental results show that the heuristic method improves the performance over the conventional ones by decreasing the scrap area and maximum execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential one while it achieves almost linear speedup as the problem size increases.
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.9-21
/
2020
The aim of this paper is to predict the Borsa Istanbul (BIST) 30 index movements to determine the most accurate buy and sell decisions using the methods of Artificial Neural Networks (ANN) and Genetic Algorithm (GA). We combined these two methods to obtain a hybrid intelligence method, which we apply. In the financial markets, over 100 technical indicators can be used. However, several of them are preferred by analysts. In this study, we employed nine of these technical indicators. They are moving average convergence divergence (MACD), relative strength index (RSI), commodity channel index (CCI), momentum, directional movement index (DMI), stochastic oscillator, on-balance volume (OBV), average directional movement index (ADX), and simple moving averages (3-day moving average, 5-day moving average, 10-day moving average, 14-day moving average, 20-day moving average, 22-day moving average, 50-day moving average, 100-day moving average, 200-day moving average). In this regard, we combined these two techniques and obtained a hybrid intelligence method. By applying this hybrid model to each of these indicators, we forecast the movements of the Borsa Istanbul (BIST) 30 index. The experimental result indicates that our best proposed hybrid model has a successful forecast rate of 75%, which is higher than the single ANN or GA forecasting models.
This study utilizes the fuzzy logic and genetic algorithm to improve the existing incident detection models by addressing the problems associated with "crisp" thresholds and model transferability (applicability). The model's major components were designed to be a set of the fuzzy inference engines, and for the self-adaptation capability the genetic algorithm was introduced in optimization(or training) of the fuzzy membership functions. This approach is often called "the hybrid of fuzzy-genetic algorithm" The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of performance measures such as detection rate, false alarm rate, and detection time. This study was not an effort for simple improvement of the model performance, but an experimental attempt to incorporate new characteristics essential for the incident detection model to be universally applicable for various roadway and traffic conditions. The study results prove that the initial objective of the study was satisfied, and suggest a direction that the future research work in this area must follow.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.