• Title/Summary/Keyword: hybrid finite element model

Search Result 183, Processing Time 0.027 seconds

Non-linear Analysis of Passive Confined Concrete Structures using Tri-Survace Concrete Model (Tri-Surface 콘크리트 모델을 이용한 수동 구속된 콘크리트의 비선형 해석)

  • 조병완;김장호;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.604-607
    • /
    • 2003
  • Recently, hybrid concrete structures such as a concrete-filled steel tubular(CFT), a steel reinforced concrete(SRC) and a composite material are popular in structure applications. They also have merit of high strength, high ductility, and large energy absorption capacity. But the analysis of hybrid concrete structures is very difficult owing to the complex behavior of concrete under passive confinement. This paper has analyzed CFT, which receives passive confinement using Tri-Surface concrete model for three dimension finite element analysis. By the result of that, the proposed model was properly forecasted a concrete behavior that receives passive restraint as well as non-linear analysis of concrete which receive uniaxial stress and high active confinement of 400Mpa. If the model through the steady study is set up especially on the factor of concrete under passive confinement, the proposed concrete model will be surely useful for analysis of the hybrid concrete structures.

  • PDF

Thermal Analysis of Automotive Disc Brake Using FFT-FEM (FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

Acoustic Characteristics Analysis of the Axi-symmetric Transducer by the combined Finite Element Method and Hybrid Type Infinite Element Method, Part II : Wideband Array Transducer Design and its Acoustic Characteristics (유한요소법과 하이브리드형 무한요소법의 결합에 의한 축대칭 변환기의 음향 특성해석(II) ;광대역 배열 변환기의 설계 및 그 음향특성)

  • Kim, Chun-Duck;Kim, Won-Ho;Kim, Dae-Whan;Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.68-75
    • /
    • 1994
  • This is the second of two companion papers wich describes the wideband array transducer design procedure and the designed transducer acoustic characteristics. In addition, the result of the designed transducer acoustic characteristics by the combined Finite Element Method and Hybrid Type Infinite Element Method, is found to better than that by the equivalent circuit model method. Therefore, the technique presented in this paper could be applied in the design and the acoustic characteristics analysis of the wideband array transducer.

  • PDF

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

A Review of Mode Synthesis Techniques and Its Application Between FE and Experimental Model (부분 구조 합성법의 고찰 및 유한 요소 모델과 실험 모델과의 합성에 관한 연구)

  • 최재웅;이상설;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.799-806
    • /
    • 1989
  • Component mode synthesis (CMS) method can be divided into free, fixed and hybrid interface method according to each component's connecting conditions. In this paper, major mode synthesis methods were reviewed and their accuracies were examined by comparing the calculated eigenvalues with those from full finite element (FE) model. Also, CMS is expanded into the coupling between finite element (FE) and experimental model. Since the assumed experimental data seldom have slope information, the slope information at the interface points is prepared by curve-fitting of the calculated values. A simple beam structure to show the effectiveness of the above method, and we found that it can improve the accuracy of the synthesis method in calculation, expecially in the low modes.

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Hybrid Simulation Model of Multi-Phase Brushless AC Motor (다상 브러시리스 교류전동기의 시뮬레이션을 위한 혼합 모델)

  • Mok, Hyung-Soo;Hong, Jun-Hee;Kim, Sang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.109-116
    • /
    • 2007
  • The emf of a permanent magnet multi-phase BLAC(Brushless AC) motor is generally a non-sinusoidal or a non-ideal trapezoid wave. So, conventional modeling using a sinusoidal or an ideal trapezoid emf can result in errors to simulate and analyze the properties of a multi-phase BLAC motor. To reduce the modeling error, this paper proposes a phase variable model, which is obtained from a hybrid modeling technique consisting of Finite Element Analysis(FEA) based circuits and equations. Since the phase model parameters including the emf waveform were obtained using FEA, the proposed hybrid modeling technique can be used to implement a simulation model for multi-phase BLAC motors with any emf voltage waveforms. Adequacy of the proposed model was established from the simulation and experimental results for a seven-phase BLAC motor.

Wave Scattering Analysis of Scatterers Submerged in Water by Using a Hybrid Numerical Approach (수중 산란체의 수치적 산란해석)

  • 김재환;김세환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.84-92
    • /
    • 2000
  • In this paper, numerical scattering analysis for submerged scatterers is performed using finite and infinite elements. Unbounded domain is truncated into finite domain and finite elements are used in the domain. Infinite elements, So called Infinite Wave Envelope Elements (IWEE) which possess wave-like behavior, are used to take into account the infinite domain on the truncated boundary Scattering from rigid sphere is taken as an example and the effects of the order and mesh size of finite elements, size of finite element model and the order of IWEE are investigated. Quadratic finite element, refined mesh and higher order IWEE are recommended to improve the non-reflection boundary condition in the numerical scattering analysis.

  • PDF

Door Effort Analysis for Hybrid Door Checker (하이브리드 도어 체커 개폐력 해석)

  • Kang, Sung-Jong;Kim, Dong-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.52-57
    • /
    • 2012
  • Proper door effort is required for the safety of passenger and pedestrian while securing door operating convenience. 3D finite element analyses for a hybrid door checker were carried out to estimate door checker arm resistance force. And, from the estimated door checker arm resistance force and theoretically calculated self-closing force, door effort was predicted. The analysis results at checker arm peaks showed excellent correlation with the test results. Also, in order to reduce solving time, a modified model with simple spring element was investigated. Finally an equation to easily calculate checker arm resistance force from checker arm shape and spring constant was suggested and its usefulness in early design stage was discussed.

Effective modeling of beams with shear deformations on elastic foundation

  • Gendy, A.S.;Saleeb, A.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.607-622
    • /
    • 1999
  • Being a significant mode of deformation, shear effect in addition to the other modes of stretching and bending have been considered to develop two finite element models for the analysis of beams on elastic foundation. The first beam model is developed utilizing the differential-equation approach; in which the complex variables obtained from the solution of the differential equations are used as interpolation functions for the displacement field in this beam element. A single element is sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving end-loadings, thus providing a benchmark solution to validate the other model developed. The second beam model is developed utilizing the hybrid-mixed formulation, i.e., Hellinger-Reissner variational principle; in which both displacement and stress fields for the beam as well as the foundation are approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as the newly-identified problem of "foundation-locking" that can arise in cases involving foundations with extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.e., for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the performance of the developed beam models in practical applications involving shear deformation effect.