• Title/Summary/Keyword: hybrid finite element

Search Result 535, Processing Time 0.025 seconds

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

Finite Element Analysis on the Strength Safety of a Hybrid Alarm Valve (복합알람밸브의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents the strength safety of a hybrid alarm valve by a finite element analysis. The stress and strain of a conventional hybrid alarm valve are calculated for the given maximum test pressure of 2MPa. Especially, the FEM computed maximum stress of a conventional hybrid valve is only 18.6% of yield strength, 370MPa. This means that the conventional valve is designed with a thick thickness of a valve structure. But, new hybrid alarm valve model, which is developed by optimized design method in this study, shows more low level of 43% in maximum stress and strain compared with that of a conventional hybrid valve. These results may recommend the reduction of a weight and a dimension for an optimized hybrid alarm valve.

Analytical Study on Hybrid Prefabricated Retrofit Method for Reinforced Concrete Beams (철근 콘크리트 보의 보강을 위한 하이브리드 조립형 보강기법에 관한 해석적 연구)

  • Moon, Sang-Pil;Lee, Sung-Ho;Lee, Young-Hak;Kim, Min-Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.71-79
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • 윤정환;정관수;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure (충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석)

  • 신현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites (직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.

High Performance Hybrid Direct-Iterative Solution Method for Large Scale Structural Analysis Problems

  • Kim, Min-Ki;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • High performance direct-iterative hybrid linear solver for large scale finite element problem is developed. Direct solution method is robust but difficult to parallelize, whereas iterative solution method is opposite for direct method. Therefore, combining two solution methods is desired to get both high performance parallel efficiency and numerical robustness for large scale structural analysis problems. Hybrid method mentioned in this paper is based on FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal method) which has good parallel scalability and efficiency. It is suitable for fourth and second order finite element elliptic problems including structural analysis problems. We are using the hybrid concept of theses two solution method categories, combining the multifrontal solver into FETI-DP based iterative solver. Hybrid solver is implemented for our general structural analysis code, IPSAP.

Formulation Method of a Singular Finite Element for Orthotropic Materials and its Application (직교 이방성 특이 유한요소의 구성과 그 응용)

  • Lee, Wan-Keun;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.464-469
    • /
    • 2000
  • In order to analyze effectively the discontinuous parts such as holes or notches included in mechanical structures by the finite element method, a singular finite element for orthotropic materials. is proposed. This singular element is formulated by the Trefftz method and the hybrid variational principles, which the displacements and stresses are simultaneously assumed using the Trefftz functions. Through several numerical tests, it is shown that the proposed singular element is very efficient for the accurate stress analysis of the various types of discontinuous parts.

  • PDF