• Title/Summary/Keyword: hybrid environmental control

Search Result 158, Processing Time 0.03 seconds

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors (초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현)

  • Im, Mi-Seop;Im, Jun-Hong;O, Sang-Rok;Yu, Beom-Jae;Yun, In-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

An Experimental Study on the Energy Saving Hydraulic Control System Using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 제어 시스템에 관한 실험적 연구)

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Kim, Jung-Soo;Yoon, Ju-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.68-76
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

A framework for distributed analytical and hybrid simulations

  • Kwon, Oh-Sung;Elnashai, Amr S.;Spencer, Billie F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.331-350
    • /
    • 2008
  • A framework for multi-platform analytical and multi-component hybrid (testing-analysis) simulations is described in this paper and illustrated with several application examples. The framework allows the integration of various analytical platforms and geographically distributed experimental facilities into a comprehensive pseudo-dynamic hybrid simulation. The object-oriented architecture of the framework enables easy inclusion of new analysis platforms or experimental models, and the addition of a multitude of auxiliary components, such as data acquisition and camera control. Four application examples are given, namely; (i) multi-platform analysis of a bridge with soil and structural models, (ii) multiplatform, multi-resolution analysis of a high-rise building, (iii) three-site small scale frame hybrid simulation, and (iv) three-site large scale bridge hybrid simulation. These simulations serve as illustrative examples of collaborative research among geographically distributed researchers employing different analysis platforms and testing equipment. The versatility of the framework, ease of including additional modules and the wide application potential demonstrated in the paper provide a rich research environment for structural and geotechnical engineering.

Optimal Design of Hybrid Control System through Inter-Building Connection (빌딩간 연결을 통한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.81-88
    • /
    • 2017
  • This study deals with the optimal design of a hybrid control system composed of a combination of active control system and passive control system for effective seismic performance improvement of two adjacent structures. The proposed hybrid control system adopts a configuration of installing an active control device in one building and connecting two adjacent structures with a passive control device so that the one-side active control force can be bi-directionally applied to both buildings through the passive connecting devices. In order to derive the optimal performance of the proposed system, the design parameters of the passive and active control systems were searched using the genetic algorithm. Numerical simulations of 10-story and 8-story buildings have been performed to verify the effectiveness of the proposed technique. For the purpose of comparison, the conventional independent control system with two identical active control systems being installed separately for each structure was also optimally designed and its seismic response has been evaluated as well. From the comparative results of the two control systems, it is demonstrated that the proposed hybrid control system requires larger control force for its one-side active control device than the conventional independent control system does for each of both-side active devices, but quite less than the total control force required for both-side devices of the independent control system, while maintaining similar seismic performance. Therefore, the proposed system is more economical and reliable than the conventional independent control system with two identical active devices.

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

A Study on the Energy Saving Hydraulic System Using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구)

  • Cho, Y.R.;Yoon, J.I.;Yoon, J.H.;Lee, M.S.;Jo, W.K.;Yoon, H.S.;Ahn, K.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구)

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yoon, Ju-Hyeon;Lee, Min-Su;Jo, Woo-Keon;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

Prediction of Daily Water Supply Using Neuro Genetic Hybrid Model (뉴로 유전자 결합모형을 이용한 상수도 1일 급수량 예측)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok;Park, Jin-Geum
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Existing models that predict of Daily water supply include statistical models and neural network model. The neural network model was more effective than the statistical models. Only neural network model, which predict of Daily water supply, is focused on estimation of the operational control. Neural network model takes long learning time and gets into local minimum. This study proposes Neuro Genetic hybrid model which a combination of genetic algorithm and neural network. Hybrid model makes up for neural network's shortcomings. In this study, the amount of supply, the mean temperature and the population of the area supplied with water are use for neural network's learning patterns for prediction. RMSE(Root Mean Square Error) is used for a MOE(Measure Of Effectiveness). The comparison of the two models showed that the predicting capability of Hybrid model is more effective than that of neural network model. The proposed hybrid model is able to predict of Daily water, thus it can apply real time estimation of operational control of water works and water drain pipes. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 11.81% and the average error was lower than 1.76%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.