• Title/Summary/Keyword: hybrid element

Search Result 823, Processing Time 0.028 seconds

Dynamic behaviour of orthotropic elliptic paraboloid shells with openings

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.225-235
    • /
    • 2017
  • In this paper a vibration study on orthotropic elliptic paraboloid shells with openings is carried out by using a hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Natural frequencies of orthotropic elliptic paraboloid shells with and without openings are presented. The influence of aspect ratio, height ratio, opening ratio and material angle on the frequencies and mode shapes are investigated.

Static and free vibration behaviour of orthotropic elliptic paraboloid shells

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper the influence of aspect ratio, height ratio and material angle on static and free vibration behaviour of orthotropic elliptic paraboloid shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. A parametric study is carried out for static and free vibration response of orthotropic elliptic paraboloid shells with respect to displacements, internal forces, fundamental frequencies and mode shapes by varying the aspect and height ratios, and material angle.

An assumed-stress hybrid element for static and free vibration analysis of folded plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.405-421
    • /
    • 2007
  • A four-node hybrid stress element for analysing orthotropic folded plate structures is presented. The formulation is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. The proposed element has six degree of freedom per node and permits an easy connection to other type of elements. An equilibrated stress field in each element and inter element compatible boundary displacement field are assumed independently. Static and free vibration analyses of folded plates are carried out on numerical examples to show that the validity and efficiency of the present element.

Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates

  • Kutlu, Darilmaz
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.359-374
    • /
    • 2011
  • In this paper, the influence of fibre orientation and aspect ratio on stability analysis of simply supported skew plates subjected to in plane loading is studied by using a four noded hybrid plate finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Some numerical problems are solved and the effects of skew angle, aspect ratio, fibre orientation and loading type on the critical buckling loads are highlighted.

Development of a flat shell element by using the hybrid Trefftz plane element with drilling D.O.F. and the DKMQ element (면내 회전 자유도가 추가된 hybrid Trefftz 평면 요소와 DKMQ 요소를 이용한 4 절점 평면 셸 요소의 개발)

  • 최누리;추연석;이승규;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.855-859
    • /
    • 2004
  • We develop a new four-node flat shell element which is accurate, efficient, and suitable to be used on general purpose. The new element has a hybrid Trefftz element with drilling degrees of freedom as a membrane part. We define the two independent displacement field: the internal displacement field that satisfies governing equations in the domain a priori and the boundary displacement field that is usually used as a conventional finite element method. The hybrid Trefftz variational formulation connects these two displacement fields on the boundary of the domain. To add drilling degrees of freedom, we introduce the Allman's quadratic displacement field to the boundary displacement field. As a result, our flat shell element has 6 degrees of freedom per a node. We also use the well-known DKMQ plate bending element for the plate part of the proposed element. The DKMQ element satisfies Mindlin-Reissner‘s plate theory along the edge of the element and gives proper behavior regardless of the thickness. A series of numerical experiments shows that the performance of the new element such as accuracy, rate of convergence, robustness to mesh quality, and so on.

  • PDF

Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites (직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.

An efficient six-node plate bending hybrid/mixed element based on mindlin/reissner plate theory

  • Mei, Duan;Miyamoto, Yutaka;Iwasaki, Shoji;Deto, Hideaki;Zhou, Benkuan
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.69-83
    • /
    • 1997
  • A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node (HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this element is proved by error estimate theories and verified by patch test respectively. Numerical studies on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric distorted mesh situations, to axial rotations, and to node positions, and no "locking" phenomenon in thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4, the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable for the development of adaptive multi-field finite element method (FEM).

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.573-588
    • /
    • 2009
  • In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.

Fracture Analysis of Spot-Welds with Edge Cracks using 2-D Hybrid Special Finite Element (이차원 하이브리드 요소를 이용한 균열을 내포하는 용접점의 유한요소 파단해석)

  • Song J. H.;Yang C. H.;Huh H.;Kim H. G.;Park S. H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.484-489
    • /
    • 2004
  • This paper employed a systematic analysis using a 2-D hybrid special finite element containing an edge crack in order to describe the fracture behavior of spot-welds in automotive structures. The 2-D hybrid special finite element is derived form a mixed formulation with a complex potential function with the description of the singularity of a stress field. The hybrid special finite element containing an edge crack can give a better description of its singularity with only one hybrid element surrounding one crack. The advantage of this special element is that it can greatly simplify the numerical modeling of the spot welds. Some numerical examples demonstrate the validity and versatility of the present analysis method. The lap-shear, lap-tension and angle-clip specimens are analyzed and some useful fracture parameters such as the stress intensity factor and the initial direction of crack growth are obtained simultaneously.