• 제목/요약/키워드: hybrid composite plate

검색결과 98건 처리시간 0.029초

원공을 갖는 복합적층판 및 혼합적층판의 좌굴 및 진동해석 (Buckling and Vibration Analysis of Laminated Composite Plate and Hybrid Composite Plate with a Hole.)

  • 구경민;홍도관;김동영;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.812-815
    • /
    • 2002
  • This paper deals with the buckling and vibration analysis of plate with a hole. We knew that in this paper, as aspect ratio rises in design parameter, the buckling strength and the natural frequency of laminated composite plate decrease and as diameter of hole for width of plate rises, the buckling strength decrease but the natural frequency increase. Also this paper compared the CFRP laminated composit plate with the hybrid composite plate, and proposed that the hybrid composite plate is stronger than the CFRP composite plate.

  • PDF

Fabrication of Hybrid Composite Plates with an Active Frequency Selective Surface

  • Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Young-Bae;Kim, Yoon-Jae
    • Composites Research
    • /
    • 제30권5호
    • /
    • pp.273-279
    • /
    • 2017
  • This paper describes the fabrication techniques and analysis of hybrid composite plates with an active frequency selective surface (FSS). For fabricating hybrid composite plate with active FSS, an active FSS with a resonance frequency located in the C band can obtained using varactor diodes. The hybrid composite plate was first designed and simulated to determine its electromagnetic properties using the commercial software HFSS. After simulation, active FSSs and hybrid composite plates were fabricated by mounting with varactor diodes. After fabrication, free space measurement was used to determine the electromagnetic properties of active FSS and the hybrid composite plates. The simulation and experimental results were in good agreement.

전복껍질 메소절편 기반 복합소재 합판 제작 및 이를 이용한 하이브리드 판재의 방탄특성 (Bulletproof Performance of Hybrid Plates using a Composite Laminated with Abalone Shell Fragments)

  • 김정우;강대원;백종규;육영기;박정호;신상모
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.43-51
    • /
    • 2019
  • Nacre of abalone shell features a "brick-and-mortar" microstructure, in which micro-plates of calcium carbonate are bonded by nanometers-thick layers of chitin and proteins. Due to the microstructure and its unique toughening mechanisms, nacre possesses an excellent combination of specific strength, stiffness and toughness. This study deals with the possibility of using nacre fragments obtained from abalone shell for making a bulletproof armor system. A composite plate laminated with abalone shell fragments is made and compression and bend tests are carried out. In addition, a bulletproof test is performed with hybrid armor systems which are composed of an alumina plate, a composite plate, and aramid woven fabric to verify the ballistic performance of nacre. The compressive strength of the composite plate is around 258.3 MPa. The bend strength and modulus of the composite plate decrease according to the plate thickness and are about 149.2 MPa and 50.3 GPa, respectively, for a 4.85 mm thick plate. The hybrid armor system with a planar density of $45.2kg/m^2$, which is composed of an 8 mm thick alumina plate, a 2.4 mm thick composite plate, and 18 layers of aramid woven fabric, satisfy the NIJ Standard 0101.06 : 2008 Armor Type IV. These results show that a composite plate laminated with abalone shell fragments can be used for a bulletproof armor system as an interlayer between ceramic and fabric to decrease the armor system's weight.

Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material

  • Rabahi Abderezak;Tahar Hassaine Daouadji;Bensatallah Tayeb
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.573-592
    • /
    • 2023
  • This paper presents a careful theoretical investigation into interfacial stresses in composite aluminum-slab reinforced concrete beam bonded by a prestressed hybrid carbon-glass composite material. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the aluminum beam, the slab reinforced concrete, the hybrid carbon-glass composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions. It is shown that the stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behaviour of the interface and design of the hybrid structures.

Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates

  • Lakshmipathi, Jakkamputi;Vasudevan, Rajamohan
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.31-46
    • /
    • 2019
  • In the present study, the various dynamic properties of MWCNT embedded fiber reinforced polymer uniform and tapered composite (MWCNT-FRP) plates are investigated. Various configurations of a tapered composite plate with ply-drop off and uniform composite plate have been considered for the development of the finite element formulation and experimental investigations. First order shear deformation theory (FSDT) has been used to derive the kinetic and potential energy equations of the hybrid composite plates by including the effect of rotary inertia, shear deformation and non-uniformity in thickness of the plate. The governing equations of motion of FRP composite plates without and with MWCNT reinforcement are derived by considering a nine- node rectangular element with five degrees of freedom (DOF) at each node. The effectiveness of the developed finite element formulation has been demonstrated by comparing the natural frequencies and damping ratio of FRP composite plates without and with MWCNT reinforcement obtained experimentally. Various parametric studies are also performed to study the effect of CNT volume fraction and CNT aspect ratio of the composite plate on the natural frequencies of different configurations of CNT reinforced hybrid composite plates. Further the forced vibration analysis is performed to compare the dynamic response of the various configurations of MWCNT-GFRP composite plate with GFRP composite plate under harmonic excitations. It was observed that the fundamental natural frequency and damping ratio of the GFRP composite plate increase approximately 8% and 37% respectively with 0.5wt% reinforcement of MWCNT under CFCF boundary condition. The natural frequencies of MWCNT-GFRP hybrid composite plates tend to decrease with the increase of MWCNT volume fraction beyond 2% due to agglomeration of CNT's. It is also observed that the aspect ratio of the CNT has negligible effect on the improvement of dynamics properties due to randomly orientation of CNT's.

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

고분자전해질 연료전지용 새로운 타입의 복합재료 분리판의 특성연구 (A Study on the Characteristics of New Type of Composite Bipolar Plate for the PEM Fuel Cell)

  • 김종완;이진선;선경복;이중희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.180-183
    • /
    • 2009
  • Composite bipolar plates offer several advantages of low cost, light weight, and ease of manufacturing compared to traditional graphite plate. However, it is difficult to achieve both high electrical conductivity and high flexural strength. In this study, the hybrid carbons filled epoxy composite bipolar plates were fabricated to test electrical conductivity and flexural properties. Graphite powders were used as the main conducting filler and continuous carbon fiber fabrics were inserted to improve the mechanical properties of the composite. This hybrid composite showed improved in-plane electrical conductivity and flexural property. The moldability of the hybrid composite was also improved comparing to the continuous prepreg composite. This study suggested that the continuous carbon fiber inserted graphite/epoxy composites can be a potential candidate material to overcome the disadvantages of conventional graphite composite or continuous prepreg composite bipolar plates.

  • PDF

혼합 적층 복합 재료판의 최적설계 (Optimal design of hybrid laminated composite plates)

  • 이영신;이열화;나문수
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1391-1407
    • /
    • 1990
  • 본 연구에서는 Kam과 Chang의 연구와 같이 판의 최소 처짐, 판의 최대 모달 에너지 감쇠비 및 최대 고유 진동수를 설계제한 조건으로 택하고 Watkins와 Morris가 사용한 순환 선형 계획법을 이용하여 혼합 적층 복합 재료판의 최적설계를 수행하였다.

배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구 (A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module)

  • 이승찬;하성규
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.13-20
    • /
    • 2019
  • 본 연구에서는 전기 자동차의 주요 부품 중 하나인, Battery Module의 품질 Issue 및 부품특성 개선을 위해 복합재료를 사용하여 구조보강 하였으며, 단일소재의 단점을 극복할 수 있는 Hybrid 개념의 기구 구조 최적화를 수행하고 성능을 비교하였다. 이를 위해 고전 적층 판 이론(Classical Laminated Plate Theory, CLPT)에 따른 복합재료 주요 설계 변수 도출 및 복합재료 물성 예측 알고리즘에 대해 연구하였으며, 설계된 복합재료의 기계적 물성을 바탕으로 유한요소해석(FEM)을 통해 Battery Module의 성능을 검증하였다. 이를 통해 자동차 Battery 부품의 안정성 및 경량화 등의 부품 특성 개선 여부를 확인할 수 있었다. 최종적으로 검증결과에 따르면 Selective Composite Patch로 보강된 Hybrid Battery Module은 기존 Al Battery Module에 비해 30%의 중량 감소 및 제품 두께 32.5%를 줄일 수 있고, 충격 성능 유지 등 Hybrid 구조의 장점을 입증하였다.

외팔형 복합재료 및 혼합적층 사각판의 자유진동해석 (Free Vibration Analysis of Cantilevered Composite and Hybrid Composite Rectangular Plates)

  • 이영신;최명환
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1899-1909
    • /
    • 1994
  • This work presents the experimental and FEM results for the free vibration of cantilevered, symmetrically and antisymmetrically laminated composite rectangular plates. The natural frequencies, mode shapes and contour plots of a number of CFRP, GFRP, DFRP-Aluminum, GFRP-Aluminum and DFRP-GFRP hybrid composite plates are experimentally obtained. Determination of Young's modulus and test procedures are described. The natural frequencies are determined for a wide range of parameters : e.g. , composite material constants, fiber angles and stacking sequences. Natural frequency and nondimensional frequency parameter results are compared with the finite element analysis and existing literatures. Agreement between experimental and calculated frequencies is excellent. The effects of varing the parameters upon the free vibration frequencies and mode shapes are discussed.